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 Confusion Matrix 
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The four cells are: 

• TP = true positive (Correctly classified as Positive) 

• TN = true negative (Correctly classified as Negative) 

• FP = false positive (Incorrectly classified as Positive) 

• FN = false negative (Incorrectly classified as Negative) 
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 Demographic Parity 

• Demographic parity is the next step of the widely known remedies to unfairness in 

machine learning (Kusner et al, 2017) and is equivalent to independence of the outcome Y-

with respect to the protected attribute (A): 

- - -p Y A = a = p Y A = a′ , Y^A, 

where Y-^A denotes independence, and a and a′ are any couple of values of the attribute. 

• This definition expects the outcomes to be the same for groups, therefore the prediction 

independent of the protected attribute group membership. 

• Example: probability of being hired is independent of gender 
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 Demographic Parity 

• Problems with demographic parity: what if we have people who are members of  multiple 

protected groups? 

• While enforcing group level fairness (say, same hiring rate for females and males), this can 

be unfair to the individual: it could force the algorithm to drop otherwise qualified individuals 

just to achieve independence of outcome with the attribute. 

• Furthermore, there could be differences in qualifications across a non-protected attribute, 

say empathy, programming skills, communication skills, analytics, which would be washed 

off by forcing equality of probability of hire at the group level. 
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   Fairness at the individual or group level 
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Equalized Odds 

• Equalizing the odds = matching the True Positive Rate and False Positive Rate for different 

values of the protected attribute (Hardt et al, 2016) 

- -p Y A = 0, Y = y = p Y A = 1, Y = y , y ∈ {0,1} 

• This is hard to do but if achieved is one of the highest levels of algorithmic fairness 

• If you’d like to learn more, see Hardt et al, 2016; Pleiss et al, 2017; Kilbertus et al, 2017. 
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Equalized Opportunity 

• Equalized opportunity is concerned with treating fairly those who are determined to be 

worthy of acceptance (Y=1). It is not concerned with rejecting people fairly across protected 

groups. In other words, the false positive rates and the true positive rates do not both need 

to be equal across the protected categories. The equalized opportunity principle states the 

following condition for the probabilities: (Hardt et al., 2016) 

- -p Y = 1 A = 0, Y = 1 = p Y = 1 A = 1, Y = 1 . 

• In a hiring example, this would be individuals deemed worthy of hiring by a human hiring 

officer, whereas Y- indicates those deemed worthy of hiring by the algorithm. 
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 Review Questions 

• What is “demographic parity”? 

• What is “fairness through unawareness”? 

• Is fairness at the group level always the best? 

• What is the “confusion matrix”? 

• What is the “equality of odds” criterion? 
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