


# Thermal Energy Network Evolution of the Penn South Community in Manhattan

NYSERDA PON 4614: Community Heat Pump Systems

1



District Scale Building Energy Simulation Started, February 2021

## Geothermal Query:

### How To Decarbonize (15) 22 Story Residential Buildings?



#### Mutual Redevelopment Houses Inc. aka Penn South Scoping Study



January 11, 2022 Via Email to:

> Ryan Dziedziech General Manager Mutual Redevelopment Houses Inc. 321 8th Ave New York, NY 10001

PENN SOUTH SCOPING STUDY: UTILIZING ON SITE THERMAL CAPACITY OF LAND SURFACE WATER AND INFRASTRUCTURE AS AN ENERGY SOURCE AND SINK During the 2021 scoping study, A (5) MW heating load was identified; The complex is home to 2500 families living in downtown Manhattan. The 5 MW boiler and 1800 central chiller plant located in the middle of the complex.





# GENERAL OBSERVATIONS; LOCAL LEGISLATION LL38, LL97, IMMINENT THREATS OF FINES

- The heat gain and loss loads of the Penn South site have the potential capacity of thermal exchange within the site boundaries, providing ample reason to move to the funding, feasibility and engineering stages.
- Ample decarbonization funding mechanisms exist to move from researching the energy transition at Penn South, through full feasibility, and onto the front-end engineering stages.
- Proceeding now with decarbonization opportunities at Penn South will further mitigate the facilities inherent exposure to LL38, LL97, and unforeseen future legislative action.
- There are other commercial buildings onsite & offsite in the area that may be able to tie into a geothermal energy network with Penn South. These should be further vetted, and letters of intent should be drafted during the feasibility stage, or for any application to NYSERDA PON 4614.

## Decision To Move Forward With An Application For Public

Opportunity Notice 4614

- NYSERDA PON 4614 is a "Community Heat Pump Systems" funding opportunity
- Building owners and participants do not need to be system benefits charge payers to join
- Anchor loads, like those from government buildings and offices, are important for gaining NYSERDA PON 4614 support
- NYC buildings qualify for PON 4614 direct from NYSERDA
- Higher performance, lower energy consumption, given larger load diversity between residential and commercial buildings

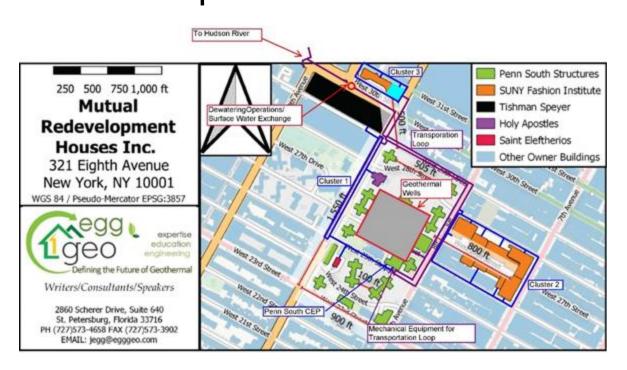


| Selection                                                         |                          |                |                |
|-------------------------------------------------------------------|--------------------------|----------------|----------------|
| Addwins                                                           | pro metal by proper      |                |                |
| timup                                                             | Marhattar                |                |                |
| Sinck                                                             | Test                     |                |                |
| (460)                                                             |                          |                |                |
| BR. (a)                                                           | 1001400001               |                |                |
| Bulling                                                           |                          |                | Override       |
| Lat done (Station                                                 | NO. TEL                  |                | -              |
| Building free (BaPI)                                              | 811311                   |                |                |
| Building Fungerer (SpFO)                                          | 65306                    |                |                |
| Building Type                                                     | Sendential MF4           |                |                |
| Calculation                                                       |                          |                |                |
| Septi To Septemb 27 + 28 7%                                       | Tri.                     |                |                |
| Swoth To Water (FS + 25) FIG.                                     | Cata Not Available       |                |                |
| Chief Aqualier (Present) Next Present)                            | Tota Present             |                |                |
| Septemal System                                                   | Standing Column<br>World | Closed<br>Leop | Open<br>Loop** |
| Desiration and Technologic Substitute (New York                   | Two                      | Fine           | 786            |
| Potential Capacity (Torsi)                                        | 1.360                    | 1,126          | 416            |
| Full Spotters Floradite (Ves-No.)                                 | No. 1                    | No             | 780            |
| replaced Significants Floridations (Transplace)                   | TWO :                    | Mo             | 760            |
| Carbon Florigens Robustion (Tyre CDSa)                            | 101                      |                |                |
| Average Costs of Carleon (S)                                      | 109,901                  | 1              | 0.1            |
| Konyal Principle Savings with Sarchental<br>System (S)            | 103,930                  |                |                |
| Projected Incommental Psylock with Carbon.<br>Geolfs (Years).     | 5                        |                |                |
| Projected Incommental Polyticals without<br>Carloon Cledit (News) | 10                       |                |                |

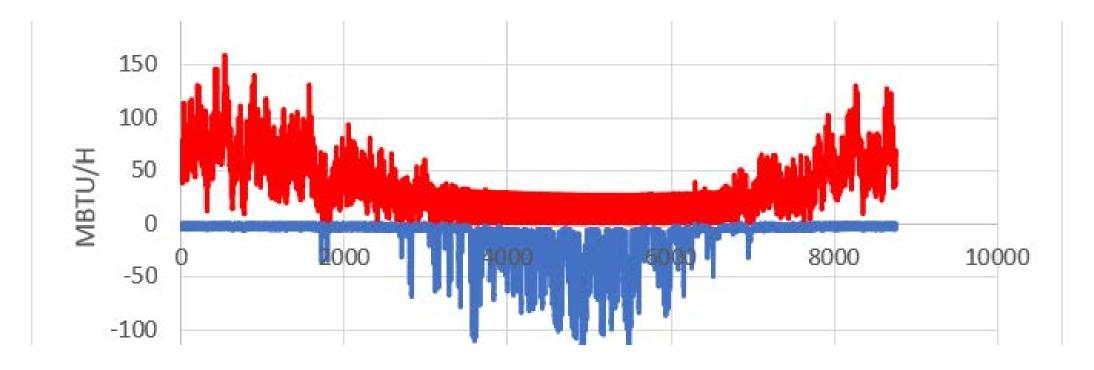
#### 212 9 AVE



| Selection                                                       |                         |         |                |
|-----------------------------------------------------------------|-------------------------|---------|----------------|
| Adirysa                                                         | 212.9 AUDIO             |         |                |
| Burnagh                                                         | Warhattan               |         |                |
| Stork .                                                         | 147                     |         |                |
| SHEET.                                                          | 1                       |         |                |
| 98.50                                                           | 10x1A70x04              |         |                |
| Building                                                        |                         |         | *Overrides     |
| uni Arma (RodYS)                                                | 14,619                  |         |                |
| Building from (SqF1)                                            | 150,909                 |         |                |
| Building Factorine (Nath)                                       | 10.179                  |         |                |
| Building Trave                                                  | Recidental MFS          |         |                |
| Celculation                                                     |                         |         |                |
| Depth To Restroys (F1 + 25 F1)                                  | 19                      |         |                |
| Depth. Fu. Mater (F1 + 25 F1)                                   | Data feet business      |         |                |
| July Aguilla (Present/Rea Present)                              | No. Present             |         |                |
| Geothermal System                                               | Standing Column<br>Worl | Chiesel | Open<br>Loop** |
| Secregoral and Vacinosa Suitability (New Yes)                   | 140                     | 1910    | Tites          |
| Potential Capacity (Torris)                                     | 101                     | 411     | 198            |
| Pull System Finantile (Nes/No)                                  | Min .                   | 400     | No.            |
| Highwall Restaure Favorible (New York)                          | 790                     | Ave     | No.            |
| Carteen Prorigines Restaution (Plans EXDAS)                     | 464                     |         |                |
| Account Count of Cartain (\$)                                   | 16757676                | +       | 8 :            |
| Arrival Potential Service with Senthermal<br>System (3):        | 126.607                 | 4       | 0              |
| Projected Schemental Psylack with Carloss<br>Credit (Heart)     | 15                      |         |                |
| Projected Incremental Paylants without<br>Sertion Could (Presi) | 19                      |         |                |


Load Diversity (Pumping Heat From Building To

Building) Thermal Energy Network Modeling Penn South Campus and Adjoining Properties © 2022 EggGeo Consulting


The US Postal Service to the northwest has up to 8 megawatts of thermal rejection through its cooling towers.

Much of that energy can be tapped to assist in the heating loads for proposed heat pump chillers at the central energy plant for Penn South play

Working Within The City's Existing Infrastructure Is Expensive And Complicated







## JANUARY 16, 2025, UPDATE

#### Current Objective

After identifying ground source heat exchange and wastewater energy recovery as potential sources and sinks for the Penn South site in previous work, this report aims to determine optimal energy source combinations and develop a conceptual design. Technical and economic feasibility of the conceptual design is explored through the lens of each resource. Site layout, sub grade infrastructure, and ability of the design to meet consumption are outlined along with an assessment of design alternatives and a sensitivity analysis.

8



# POTENTIAL DRILLING SPACE (CLOSED LOOP OPTION)

•Drilling contractors recommend drilling no deeper than 850 vertical feet. Additionally, the maximum angle they are capable of drilling is 15 degrees. A simple equation was used to calculate the lateral length (b) based on the depth of the borehole (a)=850ft, and angle (ß)=15 degrees. b, or the lateral distance we are able to access with the use of inclined drilling is 228 feet (Figure & Figure ). This was applied as a buffer to selected sides of potential drilling spaces to determine how far under partner-owned buildings we are able to drill for additional heat exchange area. Care was taken to avoid drilling under streets and buildings not owned by project partners. This area (open drilling space + lateral accessible subsurface) was used in GLHEPro as part of the closed loop analysis to reflect the additional load able to be met due to the use of inclined drilling. This software does not have options to consider the use of inclined boreholes, so the additional space described above and displayed in Figure was used to reflect this technique.

Angled Drilling In Order To Maximize Footprint To Heat

**Exchange Capacity Ratio** 



Figure 4 Left: Inclined drilling rig (about 10 degrees) in Paris, France. Right: Simplified illustration of inclined borehole cluster and an accompanying heat exchanger (Celsius Energy).

© Celsius Energy. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="https://ocw.mit.edu/help/fag-fair-use/">https://ocw.mit.edu/help/fag-fair-use/</a>

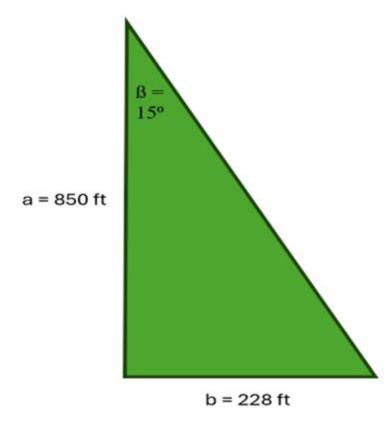



Figure 3

 $^{\circ}$  Egg Geo 2025

## Aquifer Coupled Opportunities Identified at the Chelsea Location (Penn South) due to the presence of glacial till

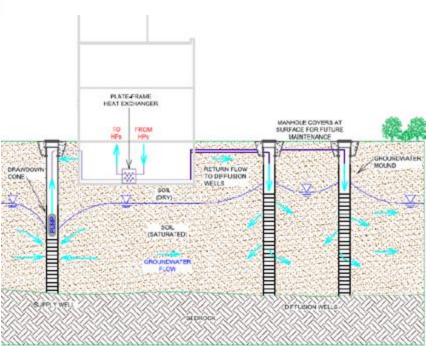



Figure 8 A sideview of the completed geologic model. Glacial till is represented by the tan cells and bedrock is represented by the green, Vertical distance (Z axis) has been exaggerated by 8x

Figure 7 The well data (red dats) displayed were imported into PetraSim and used to create a geologic model of the entire Manhattan Island

### Hydrogeologists Studied Subterranean Water Flow To Analyze Thermal Communication And Saturation




Figure 10 Geologic vertical silce of Shelter Island in Suffolk County (pubs.usgs.gav/wrj/1977/0077/report.pdf).

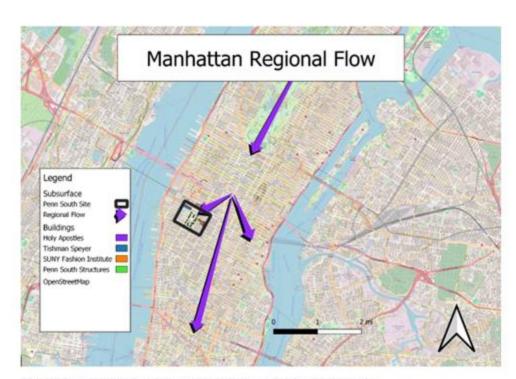



Figure 11 General regional flow of groundwater on Manhattan Island and across the site

# Flow & Thermal Effect Over 25 Years Is Computed And Digitized

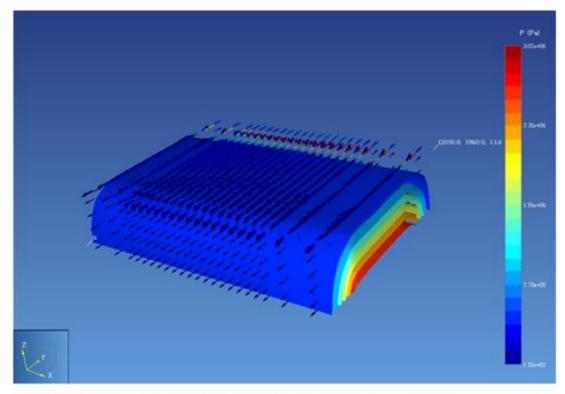
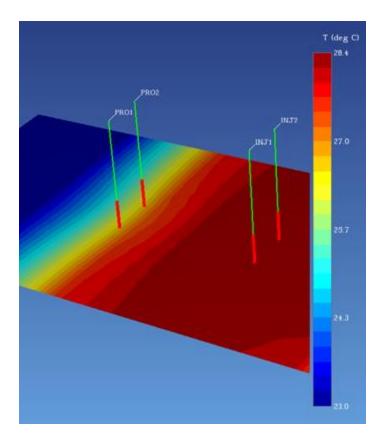
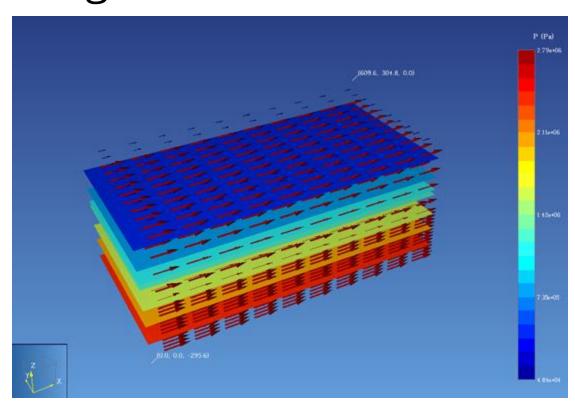
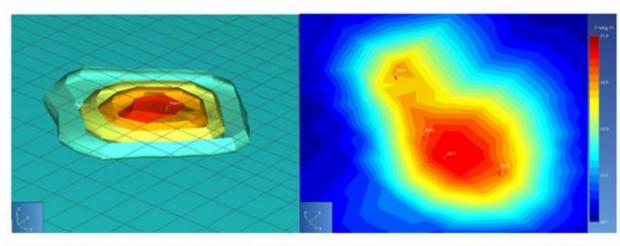
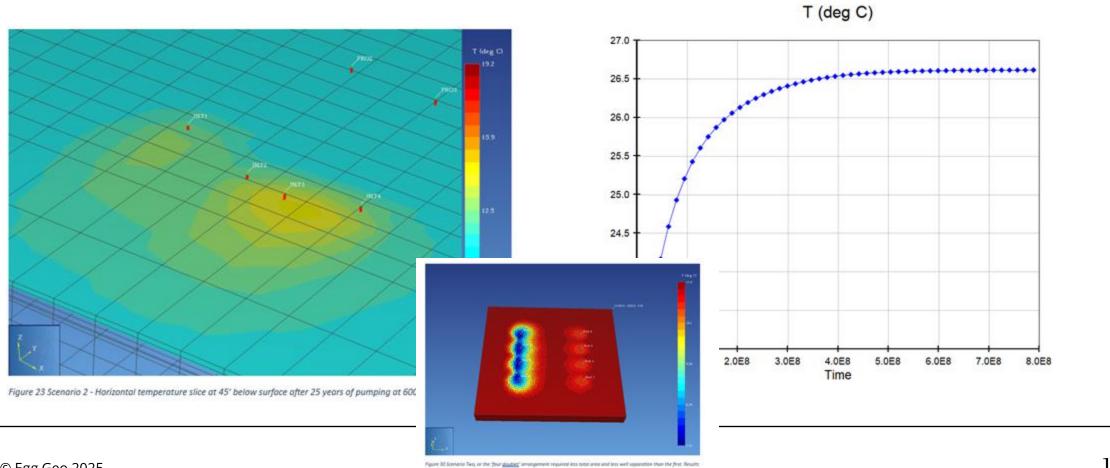




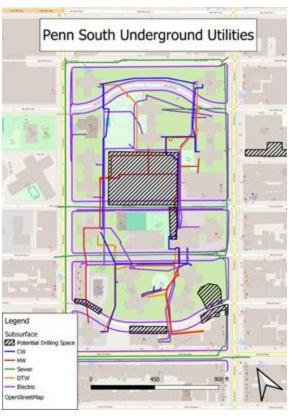

Figure 15 Pressure (Pa) displayed across the site model and vectors indicating the groundwater flow across the site



# Flow & Thermal Effect Over 25 Years Is Computed And Digitized





Figure 17 Example results displaying the temperature isosurfaces in the narrative to visualize the most important output from an otherwise large and complex 3-dimensional model (Left).). An example result of a horizontal slice is also included (Right) Temperature in Fahrenheit across 25 years is also computed at the production wells and plotted below (not pictured here).

## The Result Of Thermal Influence After 25 Years Of Pumping At 600 GPM. Also Modeled With Four Doublets Over Five Years



after five years of thermal energy storage

# The Thermal Energy Neighborhood Is Identified And Piping Arrangements Are Proposed



#### Site Layout

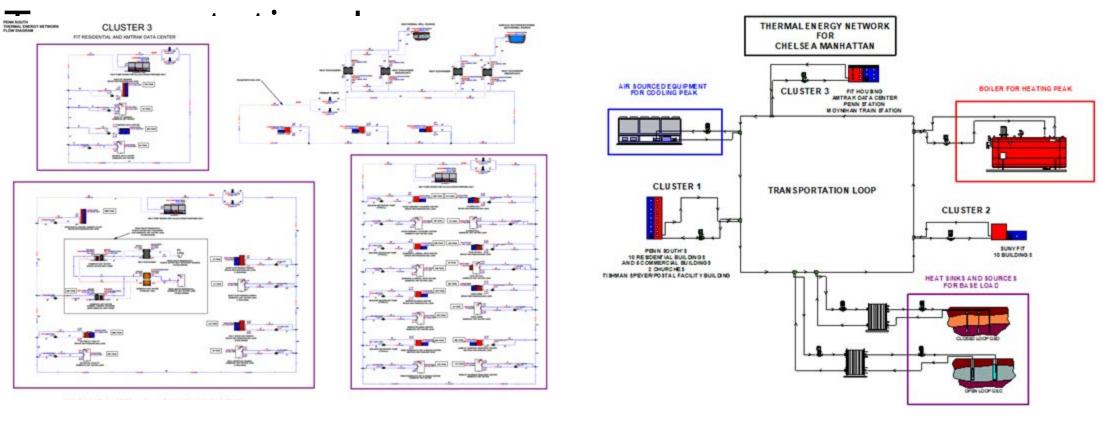

The conceptual transport loop configuration and potential drilling space for open and closed loop implementation, and other site details are displayed in Figure 34 and Figure 35. The details of the optimal spacing, depth, and type of borehole are discussed in the sensitivity analysis.



Figure 33 Site plan with the visualized transportation loop and all three conceptual clusters

 $^{\circ}$  Egg Geo 2025

### Hydronic Arrangement Of Three Clusters Decoupled To A Central Thermal Energy





MIT OpenCourseWare

https://ocw.mit.edu/

RES.ENV 007 Geothermal Energy Networks (GENs): Transforming our Thermal Energy System
IAP 2025

For information about citing these materials or our Terms of Use, visit: <a href="https://ocw.mit.edu/terms">https://ocw.mit.edu/terms</a>.