18.05 Problem Set 5, Spring 2025 Solutions

Problem 1. (20 pts: 5, 5, 5, 5 pts.) Random walks

(a) Solution: Let Y; ~ Bernoulli(0.5) so that Y = Y7 +---+Y,, ~ binomial(n, 0.5). Then
X;=2Y,—1,and 5, = X1+ -+ X,, = 2Y —n is the total displacement, with distribution
symmetric about zero. Hence,

P(|S,| > 100) = 2 P(S,, > 100) = 2- P(2Y —n > 100) = 2- P(Y > 50 +n/2)

Letting n = 10000, this probability is 2(1 — pbinom(5050, 10000, 0.5)) =|0.3124.

(b) Solution: We have E[X;] = 0 and Var(X;) = 1. So E[S10,000] = 0, and because each
step is independent, Var(S19,000) = 10000. The CLT says Sigo00 ~ NV (0, 1002). Hence,

S
P(|S10000| > 100) = P < i((’)oé’o > 1> ~P(|Z| >1)=2(1-P(Z < 1)) ~[0.3173.

The estimate is very good!

(c) Solution: Now we are given the probability and need to find the n. Since Var(S,) = n,
as in (b) we have:

S10000 5 100

vn vn
Solving, we need P(Z < 100/+/n) = 0.55, which implies 100/y/n = gnorm(0.55) = 0.12566.
So n = (100/0.12566)2 =~ | 633300 | seconds. So just over a week!

Xeno almost surely crossed the 100 step barrier for the first time much sooner. The problem
is that he keeps wandering back toward where he started, cancelling out his progress.

09 = P(‘SIOOOO| > 100) =P < ) ~ P(’Z’ > 100/\/5) = 2(1—P(Z < 100/\/5))

(d) Solution: Now we have:

X; values: 1 0 -1

probabilities: 1/3 1/3 1/3
So E[X;] = 0 and Var(X) = E[X?] — B[X]* = G 4 © 4 2 _ 2 — 2. The standard
deviation is 1/2/3.

We know that £[S10,000] = 0, and because each step is independent, Var(S10,000) = 10, 000-%.
The standard deviation is about 81.650.

The Central Limit Theorem tells us that Sigogo ~ N (0, (81.65)%). Hence,

S 100
P ( 8110%050 > 4 65> ~1- P(|Z] <1.22) = 2(1 — P(Z < 1.22)) ~[0.221.

The probability of a large displacement went down. This makes sense because the variance
of each step went down due to the chance of resting.

Problem 2. (20 pts: 5,5,5,5 pts.) Fat tails

(a) Solution: (i) The mean of a uniform distribution is its midpoint, so the range should
be centered at 39.9, i.e. [39.9 — ¢,39.9 + ].


https://qnorm(0.55
https://100/n)=0.55
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The uniform(0,1) distribution has width 1 and standard deviation 1/4/12. Our uniform dis-
tribution has width 2¢, hence standard deviation 2¢/+/12. (Since scaling a random variable
scales its standard deviation). Thus

2
2 120 = ¢=12.0V3 ~ 20.785

V12

Thus, the range is 39.9 4 12.0y/3 or approximately [19.115, 60.685].

(ii) From part (i) we know that the full range of possible values of x — p is
—12.0V/3 <z — pu < 12.0vV/3.

In terms of o, this is —oV3<z— u < av/3.

A 1o event means |z — u| > 0. Here’s a graph with the 1o event shaded. To emphasize that
the picture is the same for any uniform random variable, we use labels p and o instead of
decimals.
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The
1o event is shaded.

The width of the range of uniform random variable is 2v/3 0. So the constant density has

value f(x) = 2\/130.

Thus, the probability of the 1o event, which is the shaded area, is

1
Prob. of 1 t = 2v3 - 1o ) =1 —1/V3 ~ 0.423.
rob. of 1o even 2\/50_(( )a) /

(iii) Since the range of the uniform is u + v/3 o, u + 20 is outside the range. That is, there
are no 20 events. So the probability is 0.

1
2V30

7
w20 p—3\3o u+30 }—20
1+ 20 is outside the range of the distribution.

(iv) The top of the range of possible temperatures is u + /30 = 39.9 + /3 - 12.0 = 58.85.
Since 76 is above this range, this event has zero probability.

(b)
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We use the pnorm function in R to compute this. Here is the code and results.

mu = 39.9

sig = 12.0

ans_5aii = pnorm(mu - sig, mu, sig) + 1 - pnorm(mu + sig, mu, sig)

ans_baiii = pnorm(mu - 2*sig, mu, sig) + 1 - pnorm(mu + 2*sig, mu, sig)
ans_baiv = 1 - pnorm(76, mu, sig)

Results: (ii) 0.317  (iii) 0.0455  (iv) 0.00131, note that part (iv) is only looking for the

extreme on one side.

Note: Since the problem is expressed in terms of standard deviations from the mean, we
could have used the standard normal distribution.

That is: ans_6aii = pnorm(-1) + 1 - pnorm(1).

Or, using the symmetry of the normal distribution: ans_6bii = 2*pnorm(-1).

(c) Solution: (o) Here is the plot done in R.

Laplace PDF withmu=0,b=1
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Laplace density with g =0, b = 1.
(i) Looking on Wikipedia, we see mean = p and variance = 2b*. So o0 = V2b. Thus, we

choose [ 1 = 39.9| and | b = 12.0/V/2 ~ 8.485. | The cdf is

Py = 1227 for & < 1
1-— %e_(z_“)/b forx > p

The integral for the mean is
1 o0
mean = / ze~lPmH/b gy
2b J_

Once we’ve found the mean is p (what else could it be?) the integral for variance is

1 [e.e]
var = — (z — p)2elz=Hl/b gg,
—0oQ
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The integral for F(z) is
1 x
Pla) = - / et/ gy
2b J_
For mean and variance, the change of variable y = (z — u)/b will simplify the integrals.
They can then be computed using integration by parts. In both the mean and variance,
you can exploit symmetry to make the calculation even easier.

For the cdf, the cases x < p and x > p are handled separately. Again the change of variable
y = (u — p)/b will make things simpler.

(ii-iv) We use the formula for F'(x) and the values of p and b found in part (i)

P(lo event) = F(p—o0)+1— F(u+ o) ~ 0.243
P(20 event) = F(u—20) +1— F(u+ 20) ~ 0.0591

1
P(76) =1 — F(76) = §e*<76*#>/b ~ 0.00710

Note: We could have used symmetry to get, e.g. P(lo event) = 2F(u — o).

(d) Solution: Note: A temperature above 76 degrees is at least 30 above the mean high
temperature. That is, it is in the ‘right tail’ of the distribution. Thus, we want to decide
which distribution is most likely to have a value in its tail.

According to part (a), for the uniform distribution a 3o deviation is impossible (has zero
probability). Thus, this distribution provides the worst explanation.

According to part (b), for the normal distribution this event has an approximate probability
of 0.00131. That is, on average, there will be a 76 degree in February about once every 760
years.

According to part (c), for the double-exponential distribution this event has an approximate
probability of 0.00710. That is, on average, there will be a 76 degree in February about
once every 140 years.

Of the two, the Laplace probability seems closer to what would really happen. That is,
because of its much thicker tails, the Laplace transformation provides a better explanation
of extreme data — which we suspect occurs more often than the tiny probability given by
the normal distribution. Another factor here is distributional shift due to climate change.



18.05 Problem Set 5, Spring 2025 Solutions 5

[{e)
o
o
n
—
n o
[ o
o o
<
o4
o o
—
8_
3 /\ S
o
N
o n
S <
S
- o
o 4
o
o
o o
pt e
e T T T T T S T T T T T T
0 20 40 60 80 70 72 74 76 78 80 82
X X

Laplace and normal both with p = 39.9, ¢ = 12.0.

The figure above on the right shows the right tails of the Laplace and normal distributions.
The Laplace is the higher one (in orange).

The moral: If you see only a moderately extreme event (say, 20), the normal distribution
and the double-exponential distribution can be comparably good explanations. For example,
their respective probabilities of a 20 event are similar, at approximately 0.046 and 0.059.
However, if you see an extreme event, be skeptical that the underlying distribution is the
normal distribution, despite its convenience in other ways. Its tails are just so thin.

Problem 3. (15: 5, 5, 5 pts.) Maximum likelihood estimates
(a) Solution: The hypotheses are that the urn used is urn 1, urn 2 or urn 3. The data
is that the chosen balls were red, then green, then red. Call the data RGR. So,

5-5H-
1 — =~ 0.
P(RGR|urn 1) = 210 10 0.0758
3-8-
2 — ~0.01
P(RGR|urn 2) = 5 14.13 0.0176
7-7-6
— =~ 0.0721
P(RGR|urn 3) = TRTRE 0.07
So, the maximum likelihood estimate is that the urn is urn 1.
)\10
(b) Solution: The likelihood for z; is f(x;|A) = ﬁxge A%i 8o, the likelihood of the
data is
f(datal\) = Hf x| A) = Po% 25,

)

where P = [[z; (product of data) and S =Y z; (sum of data).

So, the log likelihood is I(A) = 10mIn(A) + 9In(P) — AS — mIn(9!). Taking the derivative
and setting it to 0, we get
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Note: The distribution mean is 10/A and A = 10/(S/m) = 10/, where Z is the data mean.
(c) Solution: The pdf of a uniform(0, b) distribution takes two values

f(x\b):{l/b if 7 is in [0, b]

0 otherwise

Since the likelihood is a product of the likelihoods of each data point the likelihood function
is

F(2.5,19.75, 12.0, 7.0[b) = (1/b)* if all 4 .data points are in the interval [0, b]
0 otherwise

This is maximized when b is as small as possible while making sure all the data points are

in [0,b]. This means b is the the maximum of the data, i.e. |b=19.75|.

Problem 4. (20 pts: 5,5,5,5 pts.) Monty Hall: Sober and drunk

(a) Solution: In all three parts to this problem we have 3 hypotheses:

H, = ‘the car is behind door A’
Hp = ‘the car is behind door B’
H¢c = ‘the car is behind door C".

In all three parts the data is D = ‘Monty opens door B and reveals a goat’.

The key to our Bayesian update table is the likelihoods: For part (a), since Monty is sober
he always reveals a goat.

P(D|H,): Hy says the car is behind A. So, assuming Hy4 is true, Monty is equally likely
to pick B or C and reveal a goat. Thus P(D|Hy4) = 1/2.

P(D|Hp): If Hp is true, the car is behind B and sober Monty will never choose B (and if
he did it would not reveal a goat). So P(D|Hpg) = 0.

P(D|Hc¢): If H, is true, the car is behind C'. Since sober Monty doesn’t make mistakes he
will open door B and reveal a goat. So P(D|H¢) = 1.

Here is the table for this situation.

H P(H) | P(D|H) | Bayes numer. | Posterior
Hy | 1/3 1/2 1/6 1/3
Hp | 1/3 0 0 0
He | 1/3 1 1/3 2/3

Total: 1 - 1/2 1

Therefore, Aviva should switch to door C', since the probability H¢ is true is twice that of
Hy.

(b) Solution: Some of the likelihoods change in this setting.
P(D|H4): If Hy is true then the car is behind A. So Monty is equally likely to show B or

C and reveal a goat. Thus P(D|H4) = 1/2. (Remember, D is the 'Monty opens door B
and reveals a goat’.)

P(D|Hp): If Hp is true then the car is behind B, drunk Monty might show B, but if he
does we won’t reveal a goat. (He will ruin the game.) So P(D|Hg) = 0.
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P(D|H¢): H. says the car is behind C. Drunk Monty is equally likely to show B or C. If
he chooses B he’ll reveal a goat. So P(D|H¢) = 1/2.

Our table is now:

H P(H) | P(D|H) | Bayes numer. | Posterior
Hy | 1/3 1/2 1/6 1/2
Hp | 1/3 0 0 0
He | 1/3 1/2 1/6 1/2

Total: 1 - 1/3 1

So in this case switching is just as good (or as bad) as staying with the original choice.

(c) Solution: We have to recompute the likelihoods. Remember the data is that Monty
chooses door B and reveals a goat.

P(D|H 4): If the car is behind A then sober or drunk Monty is equally likely to choose door
B and reveal a goat. Thus P(D|H4) = 1/2.

P(D|Hp): If the car is behind door B then if he chooses it he will reveal a car, not a goat.
So the probability of the data given Hp is 0, i.e., P(D|Hp) = 0.

P(D|Hc): Let S be the event that Monty is sober and S¢ the event he is drunk. From
the table in (a), we see that P(D|Hc,S) = 1 and from the table in (b), we see that
P(D|H¢, S¢) = 1/2. Thus, by the law of total probability

P(D|H) = P(D|He, )P(S) + P(D|He, SYP(S) =1+ 15 =
H P(H) | P(D|H) | Bayes numer. | Posterior
oy | 1/3 1/2 1/6 4/9 = 0.444
Hp 1/3 0 0 0
He | 1/3 | 5/8 5/24 5/9 = 0.556
Total: 1 - 9/24 1

Thus, switching gives a probability of winning of approximately 0.556. ‘ So switching is still the best strategy.

The intuitive feel for this is that even a little bit sober, Monty is giving some information
by picking B, or, more precisely, avoiding C'.

(d) Solution: We accept two answers: when p = 0 and ‘never’ (due to ambiguity of
‘best’). Namely, the posterior will be 0.5 in the case when p = 0 for both switching and
staying (cf. the table in (c)).

Problem 5. (20 pts: 5, 5, 5, 5 pts.) Bayesian dice

(a) Solution: We could solve this in one table by multiplying the likelihoods from each
roll. But let’s write out four tables to show the progression of the posterior.



18.05 Problem Set 5, Spring 2025 Solutions

Bayes
hypothesis  prior likelihood numerator posterior

H P(H) P(D=1H) P(D=1H)P(H) P(H|D=1)
Ha 1/5 1/4 1/20 7/20
He 1/5 1/6 1/24 7/24
Hs 1/5 1/8 1/32 7/32
Hio 1/5 1/12 1/60 7/60
Hao 1/5 1/20 1/100 7/100
total 1 1/7 1

After one roll, the 4-sided die is in the lead. We now move the posterior from the first table
to the prior of the second table, and similarly for the third and fourth tables.

Bayes

hypothesis  prior likelihood numerator posterior
H P(H) P(D=T7H) PD=T7H)P(H) PH|D=T)
Hy 7/20 0 0 0
He 7/24 0 0 0
Hs 7/32 1/8 7/256 0.67406
Hio 7/60 1/12 7/720 0.23966
Hao 7/100 1/20 7/2000 0.086279
total 1 0.040565972 1

After two rolls, the 8-sided die is in the lead, because a roll of 7 ruled out the 4- and 6-sided
dice. We may as well drop rows corresponding to hypotheses with zero probability since no

future data can resuscitate them.

Bayes
hypothesis prior likelihood numerator posterior
H P(H) P(D=1H) P(D=1H)P(H) PH|D=1)
Hs 0.67406 1/8 0.084257 0.77625
Hiz 0.23966 1/12 0.019972 0.18400
Hoao 0.086279 1/20 0.0043140 0.039744
total 1 0.10854 1
After three rolls, the 8-sided die is even more in the lead.
Bayes
hypothesis prior likelihood numerator posterior
H P(H) P(D=11|H) P(D=11{H)P(H) P(H|D=11)
Hs 0.77625 0 0 0
Hiz 0.18400 1/12 0.015333 0.88527
Hao 0.039744 1/20 0.0019872 0.11473
total 1 0.017320 1

The fourth roll ruled out the 8-sided die, so in the end, the 12-sided die is most probable.

(b) Solution: Here we combine all four likelihoods into one table:



18.05 Problem Set 5, Spring 2025 Solutions 9

Bayes

hypothesis  prior likelihood numerator posterior
H P(H) P(D|H) P(D|H)P(H) P(H|D)
Ha 1/5 1/4-3/4-1/4-3/4 32/4% 0.47189
He 1/5 1/6-5/6-1/6-5/6 52 /6 0.25892
Hs 1/5 1/8-7/8-1/8-7/8 72 /84 0.16058
Hio 1/5  1/12-11/12-1/12-11/12 112/124 0.078325
Hao 1/5  1/20-19/20-1/20-19/20 192/20% 0.030285

total 1 0.074501 1

Now the MLE is the 4-sided die, which makes sense because all we know is that two of four
rolls were 1s. We can no longer rule out the 4-, 6-, or 8-sided dice because the rolls of 7 and

11 are censored.

(c) Solution: The likelihood for n-sided is:

-() ()"

Since the prior is uniform, the posterior probabilities are then L(n)/C where

C = L(4) + L(6) + L(8) + L(12) + L(20).

We arrive at the same answer with more effort using the full Bayes’ table:

Bayes

hypothesis  prior likelihood numerator posterior
H P(H) P(D[H) P(D[H)P(H) P(H|D)
Hy 1/5 (1/4)°(3/4)% (1/4)°(3/4)%° /5  3.7468 x 107
He 1/5 (1/6)°(5/6)% (1/6)°(5/6)% /5 0.0010969
Hs 1/5 (1/8)>(7/8)% (1/8)%(7/8)% /5 0.026820
Hio 1/5  (1/12)5(11/12)%  (1/12)%(11/12)%/5 0.29330
Ha0 1/5  (1/20)5(19/20)% (1/20)5(19/20)% /5 0.67878
total 1 7.0452 x 10719 1

The MLE is the 20-sided die. This makes sense as 5 is the expected number of 1s in 100
rolls of a 20-sided die, whereas we would expect to see far more 1s with the other dice.

(d) Solution: Using the new prior, we have the Bayes’ table:

Bayes

hypothesis  prior likelihood numerator posterior
H P(H) P(D[H) P(D/H)P(H) P(H|D)
Hy 96/100  (1/4)>(3/4)%  (1/4)°(3/4)% -96/100 3.59677 x 10>
He 1/100 (1/6)°(5/6)% (1/6)°(5/6)% /100 0.0010968
Hs 1/100 (1/8)%(7/8)% (1/8)%(7/8)% /100 0.026819
Hio 1/100  (1/12)%(11/12)%  (1/12)%(11/12)% /100 0.29329
Hao 1/100  (1/20)%(19/20)%  (1/20)>(19/20)% /100 0.67876
total 1 3.52273 x 10~ 1

The MLE is still the 20-sided die. This makes sense because, while the new prior increased
the posterior on the 4-sided die by a factor of nearly 100, the posterior is still extremely
small due to the improbability of rolling only five 1s in 100 rolls of a 4-sided die.
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