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Introduction

Deterministic versus stochastic systems:

1. In both cases, we may have a well-defined set of equations.

2. In deterministic cases, we have repeatability.

Stochasticity in dynamical systems may be caused by

• External factors: these can include stochastic forcing, boundary conditions, and/or param-
eters. Typical systems in this class of problems include random linear vibrations, advection
of tracers, porous media, and others.

• Internal factors: Intrinsic instabilities which leads to chaotic behavior, i.e. sensitive de-
pendence to small perturbations. Although the system is deterministic, its chaotic behavior
leads to the adoption of a stochastic perspective.

2D steady fluid flows 2D turbulent fluid flows

Wind-generated wavesWave maker

vs

vs

Figure 1 – Examples of deterministic versus stochastic systems.
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Chapter 1

Probability Theory and Random
Variables

1.1 Definition of probability

Let us begin with an empirical definition of probability,

P =
number of favorable outcomes

total number of outcomes
.

Formally, we define the event space S which contains all the possible outcomes Ai (events).
Figure 1.1 shows an exemple of event space with simple and composite events. The event space
includes the empty set ∅. Venn diagrams show all possible logical relations between a collection of
different events and are illustrated in Figure 1.2.

A1

A2

A3 A4

A5

S

A1, . . . , A5 non-overlapping
(simple) events

A1 A2

A3 A4

A5

S

B overlapping
(composite) event

B

Figure 1.1 – Event space.

Properties of logical operators:

1. Union and intersection operators, ∪,∩, are commutative and associative.

2. Distribution property:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
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AA

A A

B

B B

Ā

A [B A \B

A \B = A \ (A \B) = A \ B̄

Figure 1.2 – Venn diagrams.

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

3. De Morgan’s law’s:

A ∪B = Ā ∩ B̄,

A ∩B = Ā ∪ B̄.

A probability is then formally defined by numbers, chosen for each event, such that it satisfies
the following axioms:

1. Pi = P (Ai) ≥ 0 (Nonnegativity),

2. P (S) = 1 (Normalization),

3. If Ai ∩Aj = ∅, then P (Ai ∪Aj) = P (Ai) + P (Aj) (Additivity).

Thus, the probability can be seen as the “area” of event Ai. The following properties can follow
from the axioms of probability

1. P (∅) = 0,

2. P (Ai) = 1− P (Āi) ≤ 1,

3. If Ai ∩Aj ∕= ∅, then P (Ai ∪Aj) = P (Ai) + P (Aj)− P (Ai ∩Aj).

Example. Toss a fair coin.
The event space consists of events A1 = H (head) and A2 = T (tail), with respective probabil-

ities P (H) = 1/2 and P (T ) = 1/2. See Figure 1.3 for a graphical depiction of the corresponding
event space.

Example. Roll a dice.
The event space consists of events A1, . . . , A6 with probabilities P (Ai) = 1/6, i = 1, . . . , 6. We

can define the composite event M = {A2, A4, A6}, representing the fact that the dice outcome is
an even number.

7



H

T

Figure 1.3 – Event space when tossing a fair coin.

1.2 Conditional probability

Given that a composite event M happened, what is the probability that Aj also happened? We
denote this probability as P (Aj |M).

A1

A2

A3 A4

A5

S

M

Figure 1.4 – Simple events conditioned on a composite event.

If M has occurred we must re-define probabilities because M is now the new event space:

P (M) = 1.

Based on this property we define the conditional probability of the event Aj conditioned on M as

P (Aj |M) =
P (Aj ∩M)

P (M)
.

Note that we have normalized with P (M) to ensure that all axioms of probability are satisfied by
the new probability P (Aj |M). From this definition it immediately follows

P (Aj ∩M) = P (Aj |M)P (M) = P (M |Aj)P (Aj).

Example (previous example continued). What is the probability of A2 given that M has happened?
To answer this question, note that our new event space is now M = {A2, A4, A6}. The condi-

tional probability is therefore given by

P (A2|M) =
P (A2 ∩M)

P (M)
=

P (A2)

P (A2 ∪A4 ∪A6)
=

1

3
.
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More generally, the conditional probability of A given that a composite event M happened is
given by

P (A|M) =
P (A ∩M)

P (M)
.

Note that this implies

P (A ∩M) = P (A|M)P (M) = P (M |A)P (A).

Based on this property we can prove the Total Probability Theorem. If all Aj , j = 1, . . . , N , are
independent (simple) events and M is composite, then

P (M) = P (M |A1)P (A1) + P (M |A2)P (A2) + · · ·+ P (M |AN )P (AN ).

Proof:

S ∩M = M ⇒ (A1 ∪A2 ∪ · · · ∪AN ) ∩M = M

⇒ (A1 ∩M) ∪ (A2 ∩M) ∪ · · · ∪ (AN ∩M) = M

⇒ P (M) = P (A1 ∩M) + P (A2 ∩M) + · · ·+ P (AN ∩M)

⇒ P (M) = P (M |A1)P (A1) + P (M |A2)P (A2) + · · ·+ P (M |AN )P (AN ).

Example. Box A contains 2000 components, of which 5% are defective. Box B contains 500
components, of which 40% are defective. Box C and D contain 1000 components each, with 10%
defective. Pick one box at random and choose one component. What is the probability that it is
defective?

We define simple events Ai, i = 1, . . . , 4 representing each box, and a composite event M =
{pick a defective component}. We know P (M |Ai) and P (Ai), thus

P (M) = P (M |A1)P (A1) + P (M |A2)P (A2) + P (M |A3)P (A3) + P (M |A4)P (A4)

= 0.05 · 1
4
+ 0.40 · 1

4
+ 0.10 · 1

4
+ 0.10 · 1

4
= 0.1625.

The total probability theorem is used together with the Bayes’ Rule, which allows to express
probabilities of the form P (Ai|M) in terms of P (M |Ai):

P (Ai|M) =
P (M |Ai)P (Ai)

P (M |A1)P (A1) + · · ·+ P (M |AN )P (AN )
.

Example. Person X is searching for a treasure with equipment that finds the treasure with 70%
success rate. Person Y has different equipment with 60% success rate. The treasure is in area I
with probability 80%, or in area II with probability 20%. Person X learns that Y searched area I
and did not succeed. Which area should he search first?

Let us define the events

AI = {treasure is in I},
AII = {treasure is in II},
B = {person Y did not find it in I}.

Then,

P (A1|B) =
P (B|A1)P (A1)

P (B|A1)P (A1) + P (B|A2)P (A2)
=

0.4 · 0.8
0.4 · 0.8 + 1 · 0.2 = 0.62.
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Person Y now finds out that X searched area I (after he did) and did not succeed. Where is the
treasure most likely located? We define

C = {X and Y did not find it in I},

and, assuming independence (see below) of the failure rate of X and Y , we have

P (A1|C) =
P (C|A1)P (A1)

P (C|A1)P (A1) + P (C|A2)P (A2)
=

0.3 · 0.4 · 0.8
0.3 · 0.4 · 0.8 + 1 · 0.2 = 0.324.

1.3 Independence

Building on the notion of conditional probability we can now define the notion of independence
between events. Two events A and B are called independent if and only if P (A|B) = P (A) or
P (B|A) = P (B). This is equivalent with P (A ∩B) = P (A)P (B), since

P (A) = P (A|B) =
P (A ∩B)

P (B)
.

1.4 Random variables

A random variable X assigns a value, Xi, to each event Ai; see Figure 1.5. The input is an event,
the output is a number, vector, etc.

A1

A2

A3 A4

X
{R,Z,N}

event space

Figure 1.5 – A random variable maps the event space into a (discrete or continuous) set of values.

Example. Toss a coin:

H → +$1,

T → −$1.

Example. Throw a dice:

1 → +$2,

5 → −$2,

6 → −$100,

2, 3, 4 → $0.
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Symbolically, X(ζ) is a variable that depends on the random outcome ζ:

X(ζ) −→

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

X1 ↔ A1 ↔ P1

X2 ↔ A2 ↔ P2
...

Xn ↔ An ↔ Pn

We can now fully describe the random variable in terms of a table {Xi, } of values and associated
probabilities (the event no longer needs to be explicitly mentioned).

We define the expected value or mean operator :

X̄ = E[X(ζ)] =

n󰁛

i=1

PiXi.

Statistical interpretation: After many experiments (m), we count i1, X1; i2, X2; . . . ; in, Xn. The
total number of experiments can be expressed as

m = i1 + i2 + · · ·+ in,

the sum of values of X over all experiments (total income) is

XT = i1X1 + i2X2 + · · ·+ inXn.

Then, the expected value of X (average income per play) follows as

X̄ =
XT

m
=

n󰁛

j=1

ij
m
Xj =

n󰁛

j=1

PjXj .

Properties of the expectation:

1. E[X(ζ) + Y (ζ)] = E[X(ζ)] + E[Y (ζ)],

2. E[αX(ζ)] = αE[X(ζ)], α ∈ R,

3. Consider a function of X(ζ), f(X(ζ)). Then,

FT = i1f(X1) + i2f(X2) + · · ·+ inf(Xn),

hence

f(X) = E[f(X(ζ))] =
FT

m
=

n󰁛

i=1

Pif(Xi).

Next, we define the variance of a random variable:

V = E[(X(ζ)− X̄)2]

= E[X(ζ)2 − 2X̄X + X̄2]

= E[X2]− 2X̄E[X] + E[X̄2]

= E[X2]− X̄2 ≥ 0,

from which follows the definition of the standard deviation

σ =
√
V ,

which possesses the same units as X.
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1.5 Continuous random variables

1.5.1 Probability density function

A continuous random variable is a random variable with an infinite number of outcomes. Take,
for example, a random number in the continuous interval [0, 1]. The probability of getting any
specific number is zero (improbable, but not impossible). On the other hand, the probability of
getting a number contained in an infinitesimal interval of length dx is nonzero, and described by
the probability density function (pdf):

P (X ∈ [x0, x0 + dx]) = fX(x0)dx,

where P (·) describes the actual probability, and fX(·) is the pdf. Therefore, the pdf fX(x) is such
that its area between any two points xa, xb gives the probability that X ∈ [xa, xb]; see Figure 1.6.
As a result, the pdf has the following properties

1. fX(x) ≥ 0 for all x, (nonnegativity)

2.
󰁕∞
−∞ fX(x)dx = 1, (normalization)

Note that the pdf itself is not a probability. It is probability per unit length.

xxa xb

p(x)

Figure 1.6 – Probability density function.

The expected value of a continuous random variable is

X̄ = E[X] =

󰁝 ∞

−∞
x fX(x)dx,

and that of a function of a continuous random variable is

G(X) = E[G(X)] =

󰁝 ∞

−∞
G(x) fX(x)dx.

Example. Consider a random variable Xu uniformly distributed in the interval [0, 2π] and described
by the pdf U(0, 2π); see Figure 1.7.

We have

X̄ = E[Xu] =

󰁝 ∞

−∞
xpu(x)dx =

󰁝 2π

0
x
1

2π
dx = π,

V = E[(X − X̄)2] =

󰁝 ∞

−∞
(x− X̄)2pu(x)dx =

󰁝 2π

0
(x− π)2

1

2π
dx =

π2

3
,

σ =
√
V =

π√
3
,
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E[cosX] =

󰁝 ∞

−∞
cosx pu(x)dx =

󰁝 2π

0
cosx

1

2π
dx = 0,

E[cos2X] =

󰁝 ∞

−∞
cos2 x pu(x)dx =

󰁝 2π

0
cos2 x

1

2π
dx =

1

2
.

x0 2⇡

1

2⇡

pu(x)

Figure 1.7 – Uniform pdf U(0, 2π).

1.5.2 Cumulative distribution function

We define the cumulative probability (or distribution) function (cdf) as

FX(x0) = P (X ≤ x0) =

󰁝 x0

−∞
fX(x)dx, for all x0,

see Figure 1.8(a). As a result, the pdf can be derived from the cdf as

fX(x) =
dFX(x)

dx
.

Moreover, the probability of any finite interval (Figure 1.8(b)) is given by

P (xa ≤ X ≤ xb) =

󰁝 xb

xa

fX(x)dx = FX(xb)− FX(xa).

We can prove the following properties for the cdf

1. limx→−∞ FX(x) = 0 (probability of the empty set),

2. limx→∞ FX(x) = 1 (probability of the full event space),

3. FX(x) is a non-decreasing function (probability of a subset).

1.5.3 Conditional expectation

Using conditional probabilities we can define the corresponding notion for conditional probability
density functions. Let a random variable X ∼ U(0, 2π). Then, the conditional pdf of U given that
x > π is given by (see Figure 1.9 for a graphical illustration)

fU (x|x > π) =
fU (x ∩ x > π)

P (x > π)

Using this pdf we can compute the conditional expectation of X given that X > π is given by (see
Figure 1.9)

E[X|X > π] =

󰁝 2π

0
xfU (x|x > π)dx =

󰁝 2π

0
x
fU (x ∩ x > π)

P (x > π)
dx =

󰁝 2π

π
x
1/(2π)

1/2
dx =

3π

2
.

13



x xa xb

p(x)

x0

F (x0)

x

p(x)(a) (b)
F (xa) F (xb)

Figure 1.8 – Cumulative distribution function.

x0 2⇡

1

2⇡

pu(x)

⇡

Figure 1.9 – Uniform pdf U(0, 2π); gray area represents pu(x ∩ x > π).

1.6 Chebyshev’s inequality

Chebyschev’s inequality is particularly important to bound the probability for large deviations
around the mean of a random variable with arbitrary probability distribution. For any random
variable with finite mean µ and nonzero, finite, standard deviation σ we have:

P (|X − µ| ≥ kσ) ≤ 1

k2
, k > 1.

1.7 Two dimensional random variables

In analogy with the scalar case we define the joint cumulative distribution function and probability
density function for a two dimensional random vector (X,Y ) (the extension can be applied for
higher dimensional vectors). Specifically, using the joint probability for the variables X,Y we
define the joint cumulative distribution function

FXY (x, y) = P (X ≤ x, Y ≤ y).

The cumulative distribution function for the random vector (X,Y ) has the same properties with
the scalar case:

1. limx→−∞ FXY (x, y) = 0 and limy→−∞ FXY (x, y) = 0 (probability of the empty set),

2. limx,y→∞ FXY (x, y) = 1 (probability of the full event space),

3. FXY (x, y) is a non-decreasing function with respect to x and with respect to y (probability
of a subset).

Note that the probabilistic information for each scalar random variable X or Y is also contained
in the joint cumulative distribution function. In particular, we have

lim
y→∞

FXY (x, y) = lim
y→∞

P (X ≤ x, Y ≤ y) = P (X ≤ x) = FX(x),

14



lim
x→∞

FXY (x, y) = lim
x→∞

P (X ≤ x, Y ≤ y) = P (X ≤ y) = FY (y).

In analogy with the scalar case we define the joint probability density function for the random
vector (X,Y )

fXY (x, y) =
∂2

∂x∂y
FXY (x, y).

The joint probability density function is quantifying the probability that the random vector belongs
in an infinitesimally small element dxdy:

P ((X,Y ) ∈ [x0, x0 + dx]× [y0, y0 + dy]) = fXY (x0, y0)dxdy.

We integrate over any subset D ⊆ R2 to obtain its probability

P ((X,Y ) ∈ D) =

󰁝󰁝

D
fXY (x, y)dxdy.

Knowing the joint probability density function, we directly obtain, through integration, the prob-
ability density functions for each of the vector components X or Y , also known as marginals:

fX(x) =

󰁝 ∞

−∞
fXY (x, y)dy and fY (y) =

󰁝 ∞

−∞
fXY (x, y)dx.

1.8 Correlation and covariance of two random variables

For applications it is often hard to quantify the dependence of two random variables through the
conditional pdf of one on the other. For this reason, we use simpler measures such as second-order
statistics.

Correlation

Let X be a random variable with mean X̄ and variance VX = var(X) = E[(X − X̄)2]. Let Y be
a random variable with mean Ȳ and variance VY = var(Y ) = E[(Y − Ȳ )2]. The correlation of X
and Y is defined as

RXY = E[XY ] =

󰁝 ∞

−∞

󰁝 ∞

−∞
xyfXY (x, y)dxdy,

The correlation has the following important properties:

1. RXY = RY X (symmetry),

2. for any vector of random variables [X1, X2, ..., XN ] the matrix with elements RXiXj is positive
semi-definite, i.e.

N󰁛

i=1

N󰁛

j=1

RXiXjaiaj ≥ 0, for all ai, aj .

A direct consequence of these properties is that the matrix RXiXj is symmetric, and it has
real, non-negative eigenvalues.
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Covariance

Covariance is a similar measure (based on second-order statistics) that focuses on measuring how
the fluctuations of two random variables around their means relate. The covariance of X and Y is
defined as

CXY = cov(X,Y ) = E[(X − X̄)(Y − Ȳ )] = E[XY ]− X̄Ȳ = RXY − X̄Ȳ .

Similarly with the correlation, covariance is both symmetric and positive semi-definite.
To characterize just the mutual dependence between the two random variables, without taking

into account their magnitude, we define the correlation coefficient, which is a normalized version
of the covariance. It is defined as

ρ(X,Y ) =
cov(X,Y )󰁳

var(X)
󰁳
var(Y )

.

If ρ(X,Y ) = 0, then X and Y are uncorrelated. Note that if X and Y are independent, then

cov(X,Y ) = E[XY ]− X̄Ȳ

=
󰁛

i

󰁛

j

XiYjP (X = Xi, Y = Yj)− X̄Ȳ

=
󰁛

i

XiP (X = Xi)
󰁛

j

YjP (Y = Yj)− X̄Ȳ

= X̄Ȳ − X̄Ȳ = 0,

that is, X and Y are uncorrelated. We have used independence to write P (X = Xi, Y = Yj) =
P (X = Xi)P (Y = Yj). On the other hand, X and Y being uncorrelated does not imply that they
are independent. For instance, we could have (with X̄ = Ȳ = 0) E[XY ] = 0 and E[X3Y ] ∕= 0,
showing that X and Y are not independent.

By the Cauchy-Schwartz inequality we have |ρ(X,Y )| ≤ 1. The equality |ρ(X,Y )| = 1 is
achieved if and only if Y = aX + b with a, b constants.

1.9 Gaussian random variable

A continuous random variable X is said to be normal or Gaussian if it has a pdf of the form

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2
.

See Figure 1.10 for a graphical representation of the pdf. The mean X is

E[X] =

󰁝 ∞

−∞
xfX(x)dx = µ,

while its variance is

var(X) = E[(X − µ)2] =

󰁝 ∞

−∞
(x− µ)2

1√
2πσ

e−(x−µ)2/2σ2
dx

=
σ2

√
2π

󰁝 ∞

−∞
y2e−y2/2dy
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=
σ2

√
2π

(−ye−y2/2)
󰀏󰀏󰀏
∞

−∞
+

σ2

√
2π

󰁝 ∞

−∞
e−y2/2dy

=
σ2

√
2π

󰁝 ∞

−∞
e−y2/2dy

= σ2.

fX

xµ

Figure 1.10 – Gaussian pdf.

Normality is preserved by linear transformations. If X is a Gaussian random variable, Y =
aX+b, a, b ∈ R is also a Gaussian random variable with E[Y ] = aE[X]+b and var(Y ) = a2var(X).
Therefore, suppose you have a Gaussian random variable with mean µ and standard deviation σ.
Then,

P (X ≤ x) = P

󰀕
X − µ

σ
≤ x− µ

σ

󰀖
= P

󰀕
Y ≤ x− µ

σ

󰀖
= Φ

󰀕
x− µ

σ

󰀖
,

where Y is a standard Gaussian random variable, that is, it has zero mean and unit variance, and
its associated cdf is

Φ(x) =

󰁝 x

−∞

1√
2π

e−x2/2dx.

In this way, we can compute probabilities for any Gaussian random variable (with any µ, σ) using
the cdf of the standard Gaussian random variable (µ = 0, σ = 1).

1.10 Central limit theorem

We consider sums of the form
Sn = X1 +X2 + · · ·+Xn,

whereX1, . . . , Xn are iid (independent, identically distributed) random variables. IfXi, i = 1, . . . , n
have mean µ and variance σ2, then in the limit n → ∞, by the central limit theorem (CLT), Sn

will have a cdf given by a Gaussian random variable with mean nµ and variance nσ2. We make
the following comments:

1. The CLT is very general (imposes no requirements on Xi).

2. Xi can be continuous or discrete random variables.

3. The sum of a large number of random variables is a Gaussian random variable.

4. The CLT eliminates the need to model Xi.

5. The independence of Xi is crucial but may be hard to prove or justify.
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Example. A machine processes parts, one at a time. Processing time for each part is a random
variable X ∼ U(1, 5). Assume that there is independence of the processing times. What is the
probability that S100 ≤ 320, where S100 = X1 + · · ·+X100?

For each random variable Xi, we have µ = E[X] = 3, σ2 = var(X) = 4/3. Thus, the cdf of S100

will have a mean µS100 = 100µ and variance σ2
S100

= 100σ2, and hence

P (S100 ≤ 320) = Φ

󰀕
320− 100µ√

100σ

󰀖
= Φ(1.73) = 0.958.

1.11 Derived distributions

1.11.1 Functions of one random variable

Example. Let X be a random variable with given pdf fX and cdf FX . Define Y = aX + b where
a > 0, b are deterministic real numbers. What are the pdf fY and cdf FY of Y ?

From Figure 1.11, we see that the cdf of Y is given by

FY (y) = P (Y ≤ y) = P (aX + b ≤ y) = P

󰀕
X ≤ y − b

a

󰀖
= FX

󰀕
y − b

a

󰀖
.

From there, to get the pdf of Y , one just needs to differentiate the cdf

fY (y) =
d

dy
FY (y) =

d

dy
FX

󰀕
y − b

a

󰀖
= fX

󰀕
y − b

a

󰀖
1

a
.

X

Y = aX + b

y

y � b

a

Figure 1.11 – Y = aX + b.

Example. Now consider the case Y = 1/X.
This time, the pdf of Y is given by

FY (y) = P (Y ≤ y) = P

󰀕
1

X
≤ y

󰀖
.

As shown in Figure 1.12, there are two cases:

• For y > 0, we have

P

󰀕
1

X
≤ y

󰀖
= P (X ≤ 0) + P

󰀕
X >

1

y

󰀖
= FX(0) + 1− FX

󰀕
1

y

󰀖
.
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• For y < 0, we have

P

󰀕
1

X
≤ y

󰀖
= P

󰀕
1

y
< X ≤ 0

󰀖
= FX(0)− FX

󰀕
1

y

󰀖
.

Putting the pieces together,

FY (y) =

󰀫
FX(0) + 1− FX(1/y), y > 0,

FX(0)− FX(1/y), y < 0.

Taking the derivative of the cdf, we finally obtain the pdf of Y

fY (y) =

󰀫
fX(1/y)1/y2, y > 0,

fX(1/y)1/y2, y < 0.

X

Y = 1/X

y � 0

1/y X

Y = 1/X

1/y

y < 0

Figure 1.12 – Y = 1/X.

Example. Next, consider the case Y = |X|.
As before, the pdf of Y is given by

FY (y) = P (Y ≤ y) = P (|X| ≤ y) .

As shown in Figure 1.13, there are two cases:

• For y < 0,
P (|X| ≤ y) = 0.

• For y ≥ 0,
P (|X| ≤ y) = P (−y ≤ X ≤ y) = FX(y)− FX(−y).

Putting the piece back together and taking the derivative, we get

fY (y) =

󰀫
fX(y) + fX(−y), y > 0,

0, y < 0.
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X

y � 0

�y y

Y = |X|

Figure 1.13 – Y = |X|.

For a general monotonic function, Y = g(X), g ∈ C1, g increasing as pictured in Figure 1.14,

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g−1(y)).

The pdf is then

fY (y) =
d

dy
FY (y) =

d

dy
P (Y ≤ y) =

d

dy
FX(g−1(y)) =

1

g′(x)

󰀏󰀏󰀏󰀏
x=g−1(y)

fX(g−1(y)).

X

y

Y = g(X)

g�1(y)

Figure 1.14 – General monotonic function Y = g(X).

Finally, for an arbitrary, possibly non-monotonic function Y = g(X), one needs to consider the
number of solutions of x = g−1(y). If y is such that x = g−1(y) has multiple solutions x1(y), x2(y),
x3(y), say, as pictured in Figure 1.15, then

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ x1(y)) + P (x2(y) ≤ X ≤ x3(y)).

The pdf for this particular value of y follows as

fY (y) =
d

dy
FY (y) =

1

g′(x)

󰀏󰀏󰀏󰀏
x1(y)

fX(x1(y))−
1

g′(x)

󰀏󰀏󰀏󰀏
x2(y)

fX(x2(y)) +
1

g′(x)

󰀏󰀏󰀏󰀏
x3(y)

fX(x3(y)).

Another way is to cut the function Y = g(X) into monotonic components and analyze them
separately.
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y

X

Y = g(X)

x1(y) x2(y) x3(y)

Figure 1.15 – Arbitrary non-monotonic function Y = g(X).

1.11.2 Random number generator

Let X ∼ U(0, 1), FX(x) = x, x ∈ [0, 1], with samples u1, u2, . . . , uN . Given a cumulative dis-
tribution function Φ(y), what should be the transformation Y = g(X), X ∼ U(0, 1), so that
FY (y) = Φ(y)? We utilize the fact that

FY (y) = FX(g−1(y)) = g−1(y).

Requiring that FY (y) = Φ(y), this implies

g(x) = Φ−1(x).

Then the samples Φ−1(u1),Φ
−1(u2), . . . ,Φ

−1(uN ) ∼ FY = Φ.

1.11.3 Functions of two random variables

Example. Let X,Y with joint pdf fXY (x, y) and cdf FXY (x, y). Define Z = X + Y . What is the
pdf fZ(z) and cdf FZ(z) of Z?

From Figure 1.16, we see that the cdf of Z for fixed z is given by

FZ(z) = P (Z ≤ z) = P (X + Y ≤ z) =

󰁝 ∞

−∞

󰁝 z−x

−∞
fXY (x, y)dydx.

The pdf is

fZ(z) =
d

dz
FZ(z) =

󰁝 ∞

−∞
fXY (x, z − x)dx,

where we have applied the Leibniz rule

d

dx

󰀥󰁝 b(x)

a(x)
f(x, t)dt

󰀦
= f(x, b(x))

db(x)

dx
− f(x, a(x))

da(x)

dx
+

󰁝 b(x)

a(x)

∂f(x, t)

∂x
dt.

Note that if X and Y are independent, fXY = fXfY . As a result, the pdf of Z is given by the
convolution of the pdfs of X and Y

fZ(z) =

󰁝 ∞

−∞
fX(x)fY (z − x)dx = fX ∗ fY .
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X

Y

X + Y  z
z

z

Y = z �X

Figure 1.16 – Z = X + Y .

Example. We now consider the transformation Z = X − Y .
From Figure 1.17, we see that the cdf of Z for fixed z is given by

FZ(z) = P (Z ≤ z) = P (X − Y ≤ z) =

󰁝 ∞

−∞

󰁝 ∞

x−z
fXY (x, y)dydx.

The pdf is

fZ(z) =
d

dz
FZ(z) =

󰁝 ∞

−∞
fXY (x, x− z)dx.

X

Y

z�z

Y = X � z

X � Y  z

Figure 1.17 – Z = X − Y .

Example. Next, we consider Z = XY .
As shown in Figure 1.18, we need to consider two cases:

• For fixed z > 0, the cdf of Z is given by

FZ(z) = P (Z ≤ z) = P (XY ≤ z) =

󰁝 0

−∞

󰁝 ∞

z/x
fXY (x, y)dydx+

󰁝 ∞

0

󰁝 z/x

−∞
fXY (x, y)dydx,

from which the pdf follows as

fZ(z) = −
󰁝 0

−∞

1

x
fXY (x, z/x)dx+

󰁝 ∞

0

1

x
fXY (x, z/x)dx =

󰁝 ∞

−∞

1

|x|fXY (x, z/x)dx, z > 0.
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• For fixed z < 0, the cdf of Z is given by

FZ(z) = P (Z ≤ z) = P (XY ≤ z) =

󰁝 0

−∞

󰁝 ∞

z/x
fXY (x, y)dydx+

󰁝 ∞

0

󰁝 z/x

−∞
fXY (x, y)dydx,

from which the pdf follows as

fZ(z) = −
󰁝 0

−∞

1

x
fXY (x, z/x)dx+

󰁝 ∞

0

1

x
fXY (x, z/x)dx =

󰁝 ∞

−∞

1

|x|fXY (x, z/x)dx.

X

Y

XY  z

z > 0

XY = z

XY = z

X

Y

XY  z

XY = z

XY = z

z < 0

XY  z

Figure 1.18 – Z = XY .

Example. Next, we consider the case Z = max{X,Y }, pictured in Figure 1.19.
We note that max{X,Y } ≤ z ⇒ X ≤ z and Y ≤ z, hence

FZ(z) = P (Z ≤ z) = P (max{X,Y } ≤ z) =

󰁝 z

−∞

󰁝 z

−∞
fXY (x, y)dydx.

The pdf is

fZ(z) =

󰁝 z

−∞
fXY (x, z)dx+

󰁝 z

−∞
fXY (z, y)dy.

Example. Next, we consider the case Z = min{X,Y }, pictured in Figure 1.20.
We note that min{X,Y } ≤ z ⇒ X ≤ z or Y ≤ z. On the other hand, min{X,Y } ≥ z ⇒ X ≥ z

and Y ≥ z, hence we write

FZ(z) = P (Z ≤ z) = P (min{X,Y } ≤ z) = 1− P (min{X,Y } ≥ z) = 1−
󰁝 ∞

z

󰁝 ∞

z
fXY (x, y)dydx.

The pdf is

fZ(z) =

󰁝 ∞

z
fXY (x, z)dx+

󰁝 ∞

z
fXY (z, y)dy.
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X

Y

z

z

max{X,Y }  z

max{X,Y } = z

Figure 1.19 – Z = max{X,Y }.

X

Y

z

z
min{X,Y } = z

min{X,Y } � z

min{X,Y }  z

Figure 1.20 – Z = min{X,Y }.

Finally, in the general case Z = H(X,Y ), we need to find the contour levels H(X,Y ) = z, as
pictured in Figure 1.21, then we have

FZ(z) = P (H(X,Y ) ≤ z).

Example. Let X, Y independent random variables that follow an exponential distribution

fX(x) =

󰀫
1
θe

−x/θ, x ≥ 0,

0, x < 0,

and likewise for Y . Compute the pdf of their difference.
Defining Z = X − Y , we have the pdf

fZ(z) =

󰁝 ∞

−∞
fX(x)fY (x− z)dx.

It is now crucial to find the limits of integration. We note that the integrand is nonzero if and only
if fX(x) ∕= 0 and fY (x − z) ∕= 0, that is, x ≥ 0 and x − z ≥ 0. Depending on the sign of z, there
can be two cases:

• If z > 0, then the range of integration is x ≥ z, thus

fZ(z) =

󰁝 ∞

z

1

θ
e−x/θ 1

θ
e−(x−z)/θdx =

1

θ2
ez/θ

(−θ)

2
e−2x/θ

󰀏󰀏󰀏
∞

z
=

1

2θ
e−z/θ.
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X

Y

H(X,Y ) = z

Figure 1.21 – Z = min{X,Y }.

• If z < 0, then the range of integration is x ≥ 0, thus

fZ(z) =

󰁝 ∞

0

1

θ
e−x/θ 1

θ
e−(x−z)/θdx =

1

θ2
ez/θ

(−θ)

2
e−2x/θ

󰀏󰀏󰀏
∞

0
=

1

2θ
ez/θ.

Combining the two pieces, we arrive at

fZ(z) =
1

2θ
e−|z|/θ, z ∈ R.

1.12 Random sequences

Consider a sequence of random variables X1, X2, . . . , XN . To see how this differs from a single
random variables, consider the following questions:

1. Given the values of X1, X2, . . . , XN , can we say something about XN+1? This involves the
notion of memory.

2. What can we say about long term averages?

3. How large does N need to be in order for XN to have a given property?

1.12.1 Bernoulli process

A Bernoulli process is a sequence Xi of independent trials, with

P (Xi = 1) = P (success at the ith trial) = p,

P (Xi = 0) = P (failure at the ith trial) = 1− p.

This is the simplest case of a random sequence: Xi+1 is independent from Xi (no memory). We
have the following properties:

1. The probability distribution for the number S of successes in n independent trials is given by
the binomial distribution

PS(k) =

󰀕
n

k

󰀖
pk(1− p)n−k, k = 0, 1, . . . , n,
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where the binomial coefficient is given by

󰀕
n

k

󰀖
=

n!

(n− k)!k!
.

As expected, we have
n󰁛

k=0

PS(k) = 1.

The expectation and variance of S are

E[S] =
n󰁛

k=0

kPS(k) = np, var(S) = np(1− p).

2. The probability distribution for the number T of trials up to (and including) the first success
is given by the geometric distribution

PT (t) = (1− p)t−1p, t = 1, 2, . . .

The expectation and variance of T are

E[T ] =
1

p
, var(T ) =

1− p

p2
.

Example. Roll a dice 5 times. What is the probability of having 3 times the face with 6?
We have p = 1/6, q = 1− p = 5/6, n = 5, k = 3, therefore

PS(k = 3) =

󰀕
5

3

󰀖󰀕
1

6

󰀖3󰀕5

6

󰀖2

= 0.03215.

Example. Roll two dice 4 times. What is the probability that 7 will never be an outcome?
The following 6 pairs correspond to the outcome being 7

(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1).

As a result, p = 6/36 = 1/6 and q = 1− p = 5/6. Since n = 4 and k = 0, we get

PS(k = 0) =

󰀕
4

0

󰀖󰀕
1

6

󰀖0󰀕5

6

󰀖4

= 0.4823.

Let us now ask a different question. What is the probability distribution of Yk, the total time
until the kth success?

We have that
Yk = T1 + T2 + · · ·+ Tk,

where Ti represents the time from the (i−1)th to the ith success. Because the trials are independent,
Ti follows the same probability distribution as T , the time to the first success, hence we have

E[Yk] =

k󰁛

i=1

E[Ti] =
k

p
, var(Yk) =

k(1− p)

p2
.
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Denoting PYk
(t) the probability that Yk = t, that is, the kth success happens at time t, we trivially

have PYk
(t) = 0 for t < k. For t ≥ k, we have

PYk
(t) =

󰀕
probability of

success at time t

󰀖
·
󰀕
probability that there are k − 1

successes until time t− 1

󰀖

= p

󰀕
t− 1

k − 1

󰀖
pk−1(1− p)t−k.

Hence,

PYk
(t) =

󰀻
󰀿

󰀽

󰀕
t− 1

k − 1

󰀖
pk(1− p)t−k, t ≥ k,

0, t < k.

Example. In a certain game, during each minute a foul occurs with probability p, and no foul with
probability 1− p. The time is discrete (counted as minutes). A foul in each minute is independent
of the rest of the game. Knowing that a player has to leave the game after 6 fouls or 30 mins
(whichever comes first), what is the probability of the player staying for 30 mins?

We model the occurrence of a foul every minute using a Bernoulli process, where P (foul) = p.
We note that the sum of PY6(t) for t = 6, 7, . . . , 29 gives the probability that 6 fouls occur within
the first 29 mins (or less). Therefore,

P (6th foul occurs over 30 min) = 1−
29󰁛

t=6

PY6(t).

Note that this probability is also equal to

P (6th foul occurs over 30 min) =
5󰁛

k=0

PS(k),

where PS(k) is the probability that k fouls occur during the first n = 30 mins.

1.12.2 Poisson process

A Poisson process is the continuous time analogue of a Bernoulli process, and thus applicable to
cases where there is no natural way to discretize time. Formally, an arrival process is called Poisson
with rate λ if it has the following properties:

1. Time homogeneity: the probability P (k, τ) of having k arrivals in an interval τ is independent
of the interval.

2. Independence: number of arrivals during a particular interval does not depend on previous
times.

3. Small interval properties: P (k, τ), τ ≪ 1, has the following properties:

(a) P (0, τ) = 1− λτ +O(τ2),

(b) P (1, τ) = λτ +O(τ2),

(c) P (k, τ) = O(τ2), k = 2, 3, . . .
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What is the probability of having k arrivals in a finite time interval of length τ? As shown
in Figure 1.22, we discretize the finite time interval into infinitesimal intervals of length δ. As a
result, we end up with n = τ/δ such intervals. In Bernoulli terms, we would have n = τ/δ trials
and we seek the probability PS(k) of having k arrivals with P (success) = λδ. From the binomial
distribution, we have

PS(k) =
n!

(n− k)!k!
(λδ)k(1− λδ)n−k

=
n!

(n− k)!k!

(λτ)k

nk

󰀕
1− λτ

n

󰀖n−k

=
n(n− 1)(n− 2) . . . (n− k + 1)

n n n . . . n

(λτ)k

k!

󰀕
1− λτ

n

󰀖n󰀕
1− λτ

n

󰀖−k

.

Taking the limit δ → 0, or n → ∞, we obtain the probability of having k arrivals in an interval τ
for a Poisson process

P (k, τ) = lim
n→∞

PS(k) =
(λτ)k

k!
e−λτ .

�

⌧

t

Figure 1.22 – Discretization of time interval for Poisson process.

Let us check the small interval properties for λτ ≪ 1

(a) P (0, τ) = e−λτ = 1− λτ +O(τ2),

(b) P (1, τ) = λτe−λτ = λτ +O(τ2),

(c) P (k, τ) = O(τ2), k = 2, 3, . . .

Let Nτ the number of arrivals during τ . Then,

E[Nτ ] = λτ, var(Nτ ) = λτ.

Finally, define T as the time for the first arrival. Its cdf is given by

FT (t) = P (T ≤ t) = 1− P (T > t) = 1− P (0, t) = 1− e−λt,

since P (T > t) = P (no arrival during [0, t]) = P (0, t). The pdf of T follows as

fT (t) =
dFT (t)

dt
= λe−λt.

Note that because of the independence property of a Poisson process, the inter-arrival time T
between any two arrivals follows the same distribution as the time for the first arrival.
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Chapter 2

Stochastic Processes and Linear
Systems

2.1 Random processes

Recall the definition of a random variable. From a random event ζ, we define a random variable
X(ζ) by assigning to each event Ai a number X(Ai)

P1, A1 → X1

P2, A2 → X2
...

Pn, An → Xn

󰀼
󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰀾
−→ P (ζ), X(ζ).

Similarly, we define a random process, or stochastic process, X(t, ζ) by assigning for each event Ao

a function X(Ai, t)

P1, A1 → X1(t)
P2, A2 → X2(t)

...
Pn, An → Xn(t)

󰀼
󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰀾
−→ P (ζ), X(t, ζ).

A stochastic process X(t, ζ) can be interpreted in the two following ways:

1. For a given event ζ0, the outcome function X(t, ζ0) is a regular deterministic function of time.

2. For every t = t0, the quantity X(t0, ζ) is a random variable.

Example. Roll a dice. To each dice outcome Ai, we associate one of the functions of time shown
in Figure 2.1.

Example. Roll a dice, then associate the following function to the outcome Ai

Ai −→ X(t, i) = ti, i = 1, 2, . . . , 6.

2.2 Averages

There are two types of averages of a stochastic process one can perform.
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A1

X1(t)

t

t

t

t

t

A2

A3

A4

A5

A6

X2(t)

X3(t)

X4(t)

X5(t)

X6(t)

Figure 2.1 – Stochastic process example: roll a dice then pick a function of time accordingly.

2.2.1 Time averages (temporal moments)

Time averages are performed over time t for a fixed ζ, such as the following temporal mean and
variance

mX(ζ) = lim
T→∞

1

T

󰁝 T

0
X(t, ζ)dt,

VX(ζ) = lim
T→∞

1

T

󰁝 T

0
[X(t, ζ)−mX(ζ)]2dt.

Note that these are random variables. We also define the time correlation,

RX(τ, ζ) = lim
T→∞

1

T

󰁝 T

0
X(t, ζ)X(t+ τ, ζ)dt,

which measures how much, for a given ζ, the function X(t, ζ) at t is correlated with itself at t+ τ
(on average over time); see Figure 2.2.

X(t, ⇣)

t t+ ⌧

Figure 2.2 – Time correlation.
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2.2.2 Ensemble averaging (statistical moments)

Ensemble averages are performed over the events ζ for a fixed t, as if the stochastic process were a
random variable. For some fixed time t = t0, the ensemble mean and variance are

mX(t0) = E[X(t0, ζ)],

VX(t0) = E
󰀅
[X(t0, ζ)−mX(t0)]

2
󰀆
.

For two fixed times t1, t2, the autocorrelation and autocovariance functions are, respectively,

RXX(t1, t2) = E[X(t1, ζ)X(t2, ζ)],

CXX(t1, t2) = E [[X(t1, ζ)−mX(t1)][X(t2, ζ)−mX(t2)]] .

Example. Roll a dice, outcome denoted as ζ = 1, . . . , 6 with probability P (ζ = i) = 1/6. Define
the stochastic process

X(t, ζ) = a cos(ζω0t),

where a and ω0 are fixed. First, calculate the time averages for a fixed ζ, viewing X(t, ζ) as a
function of time

mX(ζ) = lim
T→∞

1

T

󰁝 T

0
a cos(ζω0t)dt = 0,

VX(ζ) = lim
T→∞

1

T

󰁝 T

0
a2 cos2(ζω0t)dt =

a2

2
.

Next, perform statistics for a fixed time t0, viewing X(t, ζ) as a random variable

mX(t0) = E[X(t0, ζ)] =

6󰁛

i=1

P (ζ = i)X(t0, i) =

6󰁛

i=1

1

6
a cos(iω0t0),

VX(t0) = CXX(t0, t0) =

6󰁛

i=1

P (ζ = i)[X(t0, i)−mX(t0)]
2 =

6󰁛

i=1

1

6
[a cos(iω0t0)−mX(t0)]

2.

In general, time averages and ensemble averages are not equal.

2.2.3 Moments of derivatives and integrals

For a given stochastic process X(t, ζ), the ensemble average mX(t) = E[X(t, ζ)] is a function of
time and satisfies the following property

E[αX(t, ζ) + β] = αE[X(t, ζ)] + β,

where α and β are deterministic numbers or functions. Defining

Y (t, ζ) = X ′(t, ζ) =
dX(t, ζ)

dt
,

the ensemble average of Y (t, ζ) is therefore

mY (t) = E[Y (t, ζ)] = E

󰀗
dX(t, ζ)

dt

󰀘
=

d

dt
E[X(t, ζ)] = m′

X(t),
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and its autocorrelation function is

RY Y (t1, t2) = E

󰀥
dX(t, ζ)

dt

󰀏󰀏󰀏󰀏
t=t1

dX(s, ζ)

ds

󰀏󰀏󰀏󰀏
s=t2

󰀦

=
∂2

∂t∂s
E[X(t, ζ)X(s, ζ)]

󰀏󰀏󰀏󰀏
t=t1,s=t2

=
∂2RXX(t, s)

∂t∂s

󰀏󰀏󰀏󰀏
t=t1,s=t2

.

Similar properties hold for the integral operator. Specifically, let Z(t, ζ) =
󰁕 t
0 X(s, ζ)ds. Then

we will have:

mZ(t) = E[

󰁝 t

0
X(s, ζ)ds] =

󰁝 t

0
E[X(s, ζ)]ds =

󰁝 t

0
mX(s)ds.

Moreover,

RZZ(t1, t2) = E[

󰁝 t1

0
X(s1, ζ)ds1

󰁝 t2

0
X(s2, ζ)ds2]

=

󰁝 t1

0

󰁝 t2

0
E[X(s1, ζ)X(s2, ζ)]ds1ds2

=

󰁝 t1

0

󰁝 t2

0
RXX(s1, s2)ds1ds2.

Note that RY Y (t1, t2) is an example of two-point/time statistics. More generally, single time statis-
tics such as mX(t), VX(t), . . . are described by the cdf

FXt(x) = P (X(t, ζ) ≤ x),

and two-time statistics such as RXX(t1, t2), CXX(t1, t2), . . . are described by the joint cdf

FXt1Xt2
(x1, x2) = P (X(t1, ζ) ≤ x1, X(t2, ζ) ≤ x2).

One can then differentiate the cdfs to obtain the pdfs, and hence the statistics mX(t), . . .

2.3 Stationary stochastic process

A stationary stochastic process X(t, ζ) is one whose statistics do not depend on time (origin of
time). As a result, the ensemble average of such a process is constant,

mX(t) = E[X(t, ζ)] = mX ,

and the autocorrelation function does not dependent on t, just the difference τ = t2 − t1,

RXX(t, t+ τ) = RXX(τ).

2.3.1 Strongly stationary stochastic process

A strongly stationary stochastic process satisfies the following. Consider the families of joint random
variables

X(t1, ζ), X(t2, ζ), . . . , X(tN , ζ),

X(t1 + h, ζ), X(t2 + h, ζ), . . . , X(tN + h, ζ),

then the joint statistics (pdf) over t1, t2, . . . , tN remain the same for all t1, . . . , tN , for any N and
any h.
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2.3.2 Weakly or 2nd order stationary stochastic process

A weakly or 2nd order stationary stochastic process satisfies the following less stringent conditions

mX(t) = mX = constant,

RXX(t1, t2) = RXX(τ), τ = t1 − t2,

for all t, t1, t2. Note that strong stationarity implies weak stationarity, since

mX(t) = E[X(t, ζ)] = E[X(t+ h, ζ)] = mX ,

RXX(t, t+ τ) = E[X(t, ζ)X(t+ τ, ζ)] = E[X(t+ h, ζ)X(t+ h+ τ, ζ)] = RXX(τ),

where we have chosen h = −t to obtain the last equality.

Example. Consider the stochastic process

Y (t, ζ) = a cos(ωt+ θ(ζ)),

where θ ∼ (0, 2π); see its pdf in Figure 2.3. Is Y (t, ζ) weakly stationary? We calculate the ensemble
mean

mY (t) = E[Y (t, ζ)] = E[a cos(ωt+ θ(ζ))] = a

󰁝 2π

0
cos(ωt+ θ)

1

2π
dθ = 0,

where we have used the formula E[g(X)] =
󰁕
g(x)fX(x)dx. We also calculate the autocorrelation

function

RY Y (t, t+ τ) = E[Y (t, ζ)Y (t+ τ, ζ)]

= a2E[cos(ωt+ θ(ζ)) cos(ωt+ ωτ + θ(ζ))]

= a2
󰁝 2π

0
cos(ωt+ θ) cos(ωt+ ωτ + θ)

1

2π
dθ

= a2
󰁝 2π

0

1

2
cos(ωτ)

1

2π
dθ + a2

󰁝 2π

0

1

2
cos(2ωt+ ωτ + 2θ)

1

2π
dθ

=
1

2
a2 cosωτ,

where we have used the formula cosA cosB = 1/2[cos(A−B)+ cos(A+B)]. Since mY (t) does not
depend on time and RY Y (t, t + τ) = RY Y (τ), the process Y (t, ζ) is weakly stationary. Figure 2.4
shows the autocorrelation function RY Y (τ).

0 2⇡

1

2⇡

✓

f✓

Figure 2.3 – Uniform pdf θ ∼ (0, 2π).
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⌧

a2

2

RY Y (⌧)

Figure 2.4 – Autocorrelation function of Y (t, ζ) = a cos(ωt+ θ(ζ)).

2.3.3 Properties of the autocorrelation function for stationary processes

Let Y (t, ζ) be a stationary stochastic process with E[Y (t, ζ)] = 0. (If E[Y (t, ζ)] ∕= 0, one can always
define Y ′ = Y −mY ). Clearly all the below properties hold for the covariance function, CY Y .

The autocorrelation function RY Y (τ) = E[Y (t, ζ)Y (t+ τ, ζ)] satisfies the following properties:

1. RY Y (0) = E[Y (t, ζ)2] = σ2
Y ≥ 0 does not depend on time.

2. RY Y (τ) = RY Y (−τ) since E[Y (t, ζ)Y (t+ τ, ζ)] = E[Y (t1, ζ)Y (t1 − τ, ζ)] and set t1 = t− τ .

3. RY Y (0) ≥ |RY Y (τ)|. Indeed,

E
󰀅
(Y (t, ζ)± Y (t+ τ, ζ))2

󰀆
≥ 0

⇒ E
󰀅
Y (t, ζ)2 + Y (t+ τ, ζ)2 ± 2Y (t, ζ)Y (t+ τ, ζ)

󰀆
≥ 0

⇒ 2RY Y (0)± 2RY Y (τ) ≥ 0, using stationarity

⇒ RY Y (0) ≥ RY Y (τ) ≥ −RY Y (0).

2.4 Ergodicity

It is not always convenient or practical to calculate ensemble statistics of a stochastic process since
this requires many realizations of the stochastic process. For stationary stochastic processes, the
notion of ergodicity relates to whether it is possible to substitute ensemble averages over many
realizations to time averages over a single realization. More precisely, a stochastic process X(t, ζ)
which is stationary and its time averages equal the corresponding statistics is called ergodic.

Example. Consider the following stochastic process. We flip a coin, then

H −→ X1(t) = 1 for all t,

T −→ X2(t) = 2 for all t.

Clearly, X(t, ζ) is a stationary random process. Is it ergodic? We calculate the time average

mX(ζ) = lim
T→∞

󰁝 T

0

1

T
X(t, ζ)dt =

󰀫
1, if H,

2, if T,

and the ensemble average

mX(t) =
1

2
X1(t) +

1

2
X2(t) = 1.5.

Thus, this stochastic process is not ergodic. In general, the statistics of a stationary stochastic
process are not necessarily equal to the time averages and ergodicity is not guaranteed.
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Example. Consider the stochastic process

Y (t, ζ) = a cos(ωt+ θ(ζ)),

where θ ∼ U(0, 2π) as before. We saw previously that Y (t, ζ) is stationary, with ensemble mean
and autocorrelation function given by, respectively,

mY (t) = 0,

RY Y (τ) =
1

2
a2 cosωτ.

Let us now calculate the corresponding time averages. The time mean is

mY (ζ) = lim
T→∞

1

T

󰁝 T

0
a cos(ωt+ θ(ζ))dt = lim

T→∞

a

Tω
sin(ωT + θ) = 0,

and the time correlation is

RY (τ, ζ) = lim
T→∞

1

T

󰁝 T

0
a2 cos(ωt+ θ(ζ)) cos(ωt+ ωτ + θ(ζ))dt

= lim
T→∞

1

T

a2

2

󰁝 T

0
[cosωτ + cos(2ωt+ ωτ + 2θ)] dt

= lim
T→∞

a2

2T

󰀗
T cosωτ +

1

2ω
sin(2ωt+ ωτ + 2θ)

󰀘

=
a2

2
cosωτ.

Since the time averages equal the ensemble averages, this stochastic process is ergodic.

Example. We now generalize the above example to multiple frequencies with the following stochas-
tic process

Z(t, ζ) =
N󰁛

i=1

ai cos(ωit+ θi(ζ)),

where ai and ωi are deterministic, and θi ∼ U(0, 2π) for i = 1, . . . , N are independent random
variables. Because each term in the sum is independent and uniformly distributed, the central
limit theorem applies and tells us that the pdf fZ of Z(t, ζ) for fixed time t is Gaussian. We now
calculate the ensemble average

mZ(t) = E[Z(t, ζ)] = E

󰀥
N󰁛

i=1

ai cos(ωit+ θi(ζ))

󰀦
=

N󰁛

i=1

aiE [cos(ωit+ θi(ζ))] = 0,

and the autocorrelation function

RZZ(t, t+ τ) = E

󰀥󰀣
N󰁛

i=1

ai cos(ωit+ θi(ζ))

󰀤󰀣
N󰁛

k=1

ak cos(ωkt+ ωkτ + θk(ζ))

󰀤󰀦

= E

󰀥
N󰁛

i=1

N󰁛

k=1

aiak cos(ωit+ θi(ζ)) cos(ωkt+ ωkτ + θk(ζ))

󰀦
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=

N󰁛

i=1

N󰁛

k=1

aiakE [cos(ωit+ θi(ζ)) cos(ωkt+ ωkτ + θk(ζ))] .

Let us denote
Qik = cos(ωit+ θi(ζ)) cos(ωkt+ ωkτ + θk(ζ)).

If i = k, we have seen that

Eζ [Qii] =
1

2
cosωiτ.

If i ∕= k, we have

E[Qik] =

󰁝 2π

0

󰁝 2π

0
cos(ωit+ θi) cos(ωkt+ ωkτ + θk)

1

(2π)2
dθidθk

=
1

(2π)2

󰁝 2π

0
cos(ωit+ θi)dθi

󰁝 2π

0
cos(ωkt+ ωkτ + θk)dθk

= 0,

where we have used independence to write fθiθk = fθifθk . Thus, we finally obtain

RZZ(t, t+ τ) =

N󰁛

i=1

a2i
2

cosωiτ.

The stochastic process Z(t, ζ) is therefore stationary. It is left as an exercise to the reader to show
that the corresponding time averages are equal to the ensemble averages calculated above; hence
Z(t, ζ) is also ergodic.

2.5 Linear Time-Invariant (LTI) systems

A system is a set of physical objects that interact. Modelling is the process of representing the
behavior of the system in terms of equations. A system usually has

• inputs, which represent the external actions/signals influencing the system, and

• outputs, which represent the quantities of interest

As shown in Figure 2.5, we define the map F from the input u(t) to the output y(t), that is,

y(t) = F [u(t)].

u(t) y(t)

F

system

Figure 2.5 – An LTI system with input u(t), output y(t), and map F such that y(t) = F [u(t)].
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2.5.1 Dynamical systems

Dynamical systems are systems for which the output depends on present and past values of the
input.

Examples. The following are dynamical systems:

1. y(t) =

󰁝 t

t−3
u3(τ)dτ

2. y(t) = u(t) +
N󰁛

n=1

u(t− nδ), δ fixed.

2.5.2 Time invariant systems

Time invariant systems represents a special class of dynamical systems. Let a system with map F ,

u(t)
F−→ y(t).

We say that the system F is time-invariant if and only if shifting the input by a given time lag τ
merely shifts the output by the same lag τ , that is,

u(t+ τ)
F−→ y(t+ τ).

Examples. We consider the following systems:

1. y(t) = [u(t)]3/2.

Step 1: replace u(t) by u(t+ τ) → [u(t+ τ)]3/2.

Step 2: replace y(t) by y(t+ τ) → y(t+ τ) = [u(t+ τ)]3/2.

Step 3: are 1,2 equal? If yes, as is the case here, then the system is time-invariant.

2. y(t) =

󰁝 t

0

󰁳
u(t1)dt1.

Step 1:

󰁝 t

0

󰁳
u(t1 + τ)dt1 =

󰁝 t+τ

τ

󰁳
u(s)ds, with t1 + τ = s.

Step 2: y(t+ τ) =

󰁝 t+τ

0

󰁳
u(t1)dt1.

Step 3: clearly, 1 and 2 are not equal hence this system is not time invariant.

3. y(t) =

󰁝 t

t−s
u3(t1)dt1.

Step 1:

󰁝 t

t−s
u3(t1 + τ)dt1 =

󰁝 t+τ

t−s+τ
u3(ξ)dξ, with t1 + τ = ξ.

Step 2: y(t+ τ) =

󰁝 t+τ

t+τ−s
u3(t1)dt1.

Step 3: this time, 1 and 2 are equal hence this system is time invariant.
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2.5.3 Linear systems

A system with map L is linear if, denoting

u1(t)
L−→ y1(t),

u2(t)
L−→ y2(t),

then, for any fixed numbers α1,α2 ∈ R, we have

α1u1(t) + α2u2(t)
L−→ α1y1(t) + α2y2(t).

Examples. We consider the following systems:

1. y(t) = k
du

dt
is linear and time invariant (LTI).

2. y(t) =

󰁝 t

0
u(t1)dt1 is linear but not time invariant.

3. y(t) = au2(t) is nonlinear, time invariant.

4. y(t) = a(t)u(t), where a(t) is a given function, is linear but not time invariant.

5. The canonical damped harmonic oscillator, pictured in Figure 2.6(a), is LTI.

6. Small amplitude water waves excited by a wave maker in a water tank, as shown in Figure
2.6(b), are an LTI system.

k c

f(t)

x(t)

mẍ+ cẋ+ kx = f(t)

m

@2�

@t2
+ g

@�

@z
= 0

@�

@z
= 0

�� = 0✓(t)

(a) (b)

Figure 2.6 – LTI systems: (a) damped harmonic oscillator, (b) small amplitude water waves.

2.5.4 Convolution

Convolution is a basic property of LTI systems, which allows to relate the output to the input.
Consider the system pictured in Figure 2.7 with input u(t), output y(t) and ‘impulse response
function’ (IRF) h(t), which characterizes the response of the system to an impulse input, and is
unique for each system. Then, the convolution property allows to express the response of the system
to an arbitrary input as

y(t) =

󰁝 ∞

−∞
u(τ)h(t− τ)dτ.
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u(t) y(t)
LTI

h(t)

Figure 2.7 – LTI system.

To prove this formula, we will decompose the input into a series of impulses, as shown in Figure
2.8. We will then use the LTI property to express the output as a superposition of individual
responses to each of these impulses, shifted in time (hence the τ variable) according to when the
impulse occurred.

u(⌧)

⌧

Figure 2.8 – Decomposition of the input into series of impulses.

First, we need to define what is an impulse function, or delta function. Consider for small 󰂃 the
function

δ󰂃(t) =

󰀫
1/󰂃, −󰂃/2 ≤ t ≤ 󰂃/2,

0, otherwise,

which has unit area, and is represented in Figure 2.9. The delta function δ(t) is defined as

δ(t) = lim
󰂃→0

δ󰂃(t).

Note that although the delta function has negligible support, it still integrates to one. Some further
important properties of the delta function are as follows:

1.

󰁝 ∞

−∞
f(t)δ(t)dt = lim

󰂃→0

󰁝 󰂃/2

−󰂃/2
f(t)

1

󰂃
dt = f(0) lim

󰂃→0

󰁝 󰂃/2

−󰂃/2

1

󰂃
dt = f(0).

2.

󰁝 ∞

−∞
f(t)δ(t− ξ)dt = lim

󰂃→0

󰁝 ξ+󰂃/2

ξ−󰂃/2
f(t)

1

󰂃
dt = f(ξ) lim

󰂃→0

󰁝 ξ+󰂃/2

ξ−󰂃/2

1

󰂃
dt = f(ξ).

We are now ready to prove the convolution formula.

1. First, consider an LTI system and let u(t) = δ(t). By definition, and as pictured in Figure
2.10, the output is the impulse response function (IRF)

y(t) = L[δ(t)] = h(t).
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2

Figure 2.9 – The delta function δ(t) is the limit of δ󰂃(t) as 󰂃 → 0.

t

LTI

�(t) y(t) = h(t)

t

Figure 2.10 – Impulse response function.

2. Then, consider an arbitrary input u(t) and express it as a superposition of impulses

u(t) =

󰁝 ∞

−∞
u(ξ)δ(t− ξ)dξ.

3. Finally, utilize linearity and time-invariance to express the output as

y(t) = L[u(t)] = L

󰀗󰁝 ∞

−∞
u(ξ)δ(t− ξ)dξ

󰀘

=

󰁝 ∞

−∞
u(ξ)L[δ(t− ξ)]dξ, using linearity

=

󰁝 ∞

−∞
u(ξ)h(t− ξ)dξ, using time-invariance

=

󰁝 ∞

−∞
u(t− s)h(s)ds

= u(t) ∗ h(t),

where the last two integrals are by definition equal to the convolution of the input u(t) with
the IRF h(t).

The convolution has the following properties. If y(t) = h(t) ∗ x(t), then

1.
dy

dt
=

dh

dt
∗ x(t) = h(t) ∗ dx

dt
,

2.

󰁝 t

−∞
y(s)ds =

󰁝 t

−∞
h(s)ds ∗ x(t) = h(t) ∗

󰁝 t

−∞
x(s)ds.
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Impulse Response Function

A causal system is one that responds only after being excited (note that all physical systems are
causal). In this case, the impulse response function satisfies h(t) = 0 for t < 0. Suppose now that
the input is such that u(t) = 0 for t < 0. Then, the convolution formula for the response becomes

y(t) =

󰁝 ∞

−∞
u(τ)h(t− τ)dτ =

󰁝 t

0
u(τ)h(t− τ)dτ.

How to find the impulse response function for t > 0? Let us consider the example of a forced
damped oscillator. By definition, the IRF is the response of the system to a delta function input
and zero initial conditions, hence we need to solve

mẍ+ bẋ+ kx = δ(t), x(0) = ẋ(0) = 0.

We take the integral of this equation from −󰂃/2 to 󰂃/2 and let 󰂃 → 0

lim
󰂃→0

󰁝 󰂃/2

−󰂃/2
(mẍ+ bẋ+ kx)dt = lim

󰂃→0

󰁝 󰂃/2

−󰂃/2
δ(t)dt.

In general, only the highest order derivative on the left-hand side, here ẍ, is expected to have an
impulse behavior and thus to give a nonzero contribution to the integral as 󰂃 → 0. The other terms
on the left-hand side, ẋ and x, remain finite hence their integral vanishes as 󰂃 → 0. Note also that
by definition of the delta function, the integral on the right-hand side is simply equal to one, hence

mẋ(0+)−mẋ(0−) = 1.

Therefore, the impulse imparts new initial conditions to the system at t = 0+

x(0+) = 0, ẋ(0+) =
1

m
,

and the problem for t > 0 becomes

mẍ+ bẋ+ kx = 0, x(0+) = 0, ẋ(0+) =
1

m
.

To solve this equation, we consider the ansatz

x(t) = c1e
s1t + c2e

s2t,

which gives the quadratic equation
ms2 + bs+ k = 0,

and hence the roots are

s1,2 = − b

2m
±

√
b2 − 4km

2m
= −c± iωd,

assuming that b2 ≪ 4k. The solution finally gives the impulse response function, h(t) = x(t).
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2.5.5 Fourier series and Fourier transforms

Consider a periodic function f(t) with period T , that is, f(t + T ) = f(t), as pictured in Figure
2.11. Then, this function admits the following Fourier series expansion

f(t) = A0 +

∞󰁛

n=1

{An cos(nω0t) +Bn sin(nω0t)} ,

where ω0 = 2π/T is the fundamental frequency, and the Fourier coefficients A0, An, Bn are defined
as

A0 =
1

T

󰁝 T

0
f(t)dt,

An =
2

T

󰁝 T

0
f(t) cos(nω0t)dt,

Bn =
2

T

󰁝 T

0
f(t) sin(nω0t)dt.

A more compact equivalent representation is

f(t) =
∞󰁛

n=−∞
Cne

inω0t

where the Fourier coefficients Cn are

Cn =
1

T

󰁝 T

0
f(t)e−inω0tdt.

tT 2T

f(t)

3T

Figure 2.11 – Periodic function with period T .

The Fourier transform is an extension of the Fourier series to aperiodic functions that are
absolutely integrable, that is, 󰁝 ∞

−∞
|f(t)|dt < ∞,

as picture in Figure 2.12. For such functions, the direct and inverse Fourier transforms are defined,
respectively, as

f̃(ω) = F [f(t)] =

󰁝 ∞

−∞
f(t)e−iωtdt,

f(t) = F−1[f̃(ω)] =
1

2π

󰁝 ∞

−∞
f̃(ω)eiωtdω.

Some useful properties of the Fourier transform are as follows:
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1. F
󰀗
dnf

dtn

󰀘
= (iω)nf̃ .

2. F
󰀗󰁝 t

−∞
fdt

󰀘
=

1

iω
f̃(ω) + πf̃(0)δ(ω).

t

f(t)

Figure 2.12 – Aperiodic function with compact support.

The Fourier transform is a very useful tool for solving linear ODEs with constant coefficients (as
long as the response vanishes as time goes to infinity). Consider, for example, the forced damped
oscillator

mẍ+ bẋ+ kx = f(t).

Taking the Fourier transform on both sides of the equation leads to the algebraic equation

m(iω)2x̃+ b(iω)x̃+ kx̃ = f̃ ,

hence the response can be directly expressed as

x̃(ω) =
f̃(ω)

−mω2 + k + ibω
.

2.5.6 Transfer function

For LTI systems, recall that we have

y(t) = h(t) ∗ u(t).

Taking the Fourier transform of this expression, the convolution is replaced by a standard product

ỹ(ω) = F [y(t)] = F
󰀗󰁝 ∞

−∞
u(τ)h(t− τ)dτ

󰀘

=

󰁝 ∞

−∞

󰁝 ∞

−∞
u(τ)h(t− τ)e−iωtdτdt

=

󰁝 ∞

−∞

󰁝 ∞

−∞
u(τ)h(t1)e

−iω(t1+τ)dt1dτ, t1 = t− τ

=

󰁝 ∞

−∞
h(t1)e

−iωt1dt1

󰁝 ∞

−∞
u(τ)e−iωτdτ

= h̃(ω)ũ(ω).
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The function h̃(ω) is the Fourier transform of h(t), and is called the transfer function H(ω). Thus,
the output of an LTI system can equivalently be expressed in terms of the convolution of h(t) and
u(t), or in terms of the product of H(ω) and ũ(ω)

y(t) = h(t) ∗ u(t),
ỹ(ω) = h̃(ω)ũ(ω).

Example. Consider the forced damped oscillator defined by

mẍ+ bẋ+ kx = f(t).

Since the response to a delta function input is the impulse response, one can set f(t) = δ(t)

mẍ+ bẋ+ kx = δ(t),

so that x(t) = h(t) is the impulse response function. Then, the Fourier transform of x(t) is, by
definition, the transfer function H(ω)

(iω)2mH(ω) + iωbH(ω) + kH(ω) = 1 ⇒ H(ω) =
1

k − ω2m+ ibω
.

Thus, the Fourier transform gives a convenient way of calculating H(ω) without explicitly calcu-
lating the IRF h(t).

2.6 Spectrum of a stochastic process

2.6.1 Definition

Let Y (t, ζ) a stationary stochastic process with E[Y (t, ζ)] = 0 and autocorrelation function RY Y (τ).
We define the power spectral density (in short, the spectrum) as the Fourier transform of the
autocorrelation function, that is,

SY Y (ω) =

󰁝 ∞

−∞
RY Y (τ)e

−iωτdτ,

RY Y (τ) =
1

2π

󰁝 ∞

−∞
SY Y (ω)e

iωτdω.

Note that for the case of a non-zero mean stochastic process the spectrum is defined using the
covariance function, CY Y (τ). The spectrum has the following properties:

1. SY Y (ω) is real and even since RY Y (τ) is real and even

SY Y (ω) =

󰁝 ∞

−∞
RY Y (τ)e

−iωτdτ

=

󰁝 ∞

−∞
RY Y (τ)(cosωτ − i sinωτ)dτ

=

󰁝 ∞

−∞
RY Y (τ) cosωτdτ.

2. The area under SY Y is related to the energy (variance) of the stochastic process. Indeed,

σ2
Y = RY Y (τ)|τ=0 =

1

2π

󰁝 ∞

−∞
SY Y (ω) e

iωτ
󰀏󰀏
τ=0

dω =
1

2π

󰁝 ∞

−∞
SY Y (ω)dω.

3. SY Y (ω) ≥ 0, to be proven later in Section 2.7.3.
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2.6.2 Relationship with the Fourier transform

Why do we bother defining the spectrum instead of simply working with the usual Fourier trans-
form? To answer this question, consider a stationary stochastic process Y (t, ζ). By definition, its
variance is independent of time,

σ2
Y = RY Y (0),

which means that Y (t, ζ) cannot vanish as time goes to infinity. As a result, Y (t, ζ) is not integrable
(does not have compact support) and its Fourier transform does not exist. On the other hand, it
is usually the case that RY Y (τ) goes to zero as |τ | goes to infinity. The Fourier transform of RY Y

is thus well-behaved, and is precisely the definition of the spectrum

SY Y (ω) =

󰁝 ∞

−∞
RY Y (τ)e

−iωτdτ.

To understand how the spectrum relates to the frequency content of Y (t, ζ), assume that Y (t, ζ) is
Gaussian and consider the decomposition

Y (t, ζ) =
N󰁛

i=1

ai cos(ωit+ θi(ζ)),

where ai and ωi are deterministic amplitudes and frequencies, and θi ∼ U(0, 2π) are i.i.d. random
phases. We have previously calculated the autocorrelation function of this process,

RY Y (τ) =

N󰁛

i=1

1

2
a2i cosωiτ.

The spectrum is then given by the Fourier transform of RY Y ,

SY Y (ω) = F [RY Y (τ)] =

N󰁛

i=1

1

2
a2iF [cosωiτ ] =

N󰁛

i=1

1

2
a2iπ[δ(ω − ωn) + δ(ω + ωn)].

As illustrated in Figure 2.13, the spectrum consists of delta functions of amplitude πa2i /2 at the
discrete frequencies ωi. Note that increasing the number of frequencies, one can recover the contin-
uous spectrum in the limit N → ∞ and ωi+1−ωi → 0. Thus, the spectrum reflects the distribution
of energy in Y (t, ζ) over different frequencies, much as we would have expected from a Fourier
transform of Y (were it well-defined). There are however important differences:

1. The spectrum represents the energy (and not amplitude) content of Y , hence the amplitudes
a1, a2, . . . appear squared in the spectrum.

2. The spectrum does not carry any information on the phases θ1, θ2, . . . of Y , and as such it
does not say anything about whether the phases are correlated or not. Hence, the spectrum
by itself is not sufficient to describe the shape of the pdf of Y at a given time.

Remark. In real-world applications, one cannot measure a stochastic process for an infinite amount
of time, making the computation of the autocorrelation function a tricky task (especially for large
values of the time lag τ). On the other hand, one can show that the autocorrelation function can
also be obtained by

SY Y (ω) = lim
T→∞

1

2T
E
󰁫
|ỸT (ω)|2

󰁬
,
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Figure 2.13 – Spectrum of a stochastic process with discrete frequencies.

where ỸT (ω) = F [YT (t)], and YT is a truncation of Y in the interval t ∈ [−T, T ]. Rather than
going through the autocorrelation function, it is thus customary to approximate the spectrum by
computing

SY Y (ω) ≃
1

2T
E
󰁫
|ỸT (ω)|2

󰁬
.

2.6.3 Simulating realizations of a given spectrum

Suppose we know that a stochastic process Y (t, ζ) has spectrum SY Y (ω) and is Gaussian. How to
compute realizations of the process Y (t, ζ)? First, we need to chose a fine subdivision 0 ≤ ω1 <
ω2 < · · · < ωN+1 of the frequency axis, as shown in Figure 2.14. Then, in each frequency interval
[ωk,ωk+1], we choose a unique ω̂k by sampling uniformly a value in the interval [ωk,ωk+1]. Then,
the stochastic process Y (t, ζ) can be approximated and simulated with its discrete counterpart

Yd(t, ζ) =

N󰁛

k=1

ak cos(ω̂kt+ θk(ζ)),

where the deterministic amplitudes ak remain to be found, the deterministic frequencies ω̂k are
known and the phases θk(ζ) are i.i.d. random variables. The discrete spectrum corresponding to
Yd(t, ζ) has been calculated previously

SYdYd
(ω) =

N󰁛

k=1

π

2
a2k [δ(ω − ω̂k) + δ(ω + ω̂k)] .

We now equate the distribution of energy over different frequencies for SY Y and SYdYd

1

π

󰁝 ωk+1

ωk

SY Y (ω)dω =
1

π

󰁝 ωk+1

ωk

SYdYd
(ω)dω, k = 1, . . . , N.

Approximating the integral of SY Y with a midpoint rule, and recalling that delta functions in SYdYd

integrate to one, we finally obtain a relation relating the discrete amplitudes ak with the initial
continuous spectrum SY Y

ak =

󰁵
2

π
SY Y (ω)∆ω, k = 1, . . . , N.
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Figure 2.14 – Discretization of a continuous spectrum (only the positive frequencies are shown).

2.6.4 Wave spectrum

The wave spectrum is the spectrum of a Gaussian, stationary stochastic process representing the
wave elevation

η(t, ζ) =

N󰁛

i=1

An cos(ωnt+ θn(ζ)),

where An and ωn are, respectively, deterministic amplitudes and frequencies, and θn(ζ) are i.i.d.
random variables in [0, 2π]. Thus, a wave field consists of many harmonics with random phases.
From the central limit theorem, we know that the surface elevation η in the above representation
is Gaussian. This representation usually follows from the discretization of a continuous spectrum,
as described in the previous section. For water waves, a commonly used continuous spectrum is
the Pierson-Moskowitz spectrum,

S(ω) =
A

ω5
e−B/ω4

,

where A and N are the following constants

A = ag2 = 0.0081g2,

B = 1.25ω4
p,

with ωp a function of the wind speed at a height of 19.5 m. Other spectral forms may be used,
for instance the JONSWAP spectrum which has more free parameters, hence a better description.
Since the spectra are obtained through direct measurements, it is important to assume ergodicity.

2.6.5 Wind shear and turbulence

Another use of stochastic processes is in modeling wind shear and turbulence. Consider the situation
picture in Figure 2.15, where the longitudinal component Ũ(z, t, ζ) of the turbulent velocity field
is decomposed as

Ũ(z, t, ζ) = Ū(z, τ) + u(t, ζ),

where Ū(t, τ) is a short-term mean with averaging time τ and u(t, ζ) is a fluctuating component
representing turbulent eddies. The mean profile is expressed as

Ū(z, τ) = Ū(zr, τr)

󰀗
1 + C ln

z

zr

󰀘 󰀗
1− 0.4Iu(z) ln

τ

τr

󰀘
,

where zr = 10 m, τr = 3600 s, C is a constant and Iu(z) is the turbulence intensity, which goes as
follows

Iu(z) = 0.06
󰀅
1 + 0.043Ū(zr, τr)

󰀆󰀕 z

zr

󰀖−0.22

.
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The fluctuations u(t, ζ) are modelled as a stochastic process with the following Davenport spectrum

Suu(ω) =
Ū2
10δ

ω

4θ2

(1 + θ2)4/3
, θ =

ωLu

2πŪ10
,

where δ = 10−3 and Lu = 1200 m.

z

Ũ(z, t, ⇣)

Figure 2.15 – Wind shear and turbulence.

2.7 Wiener-Khinchine relations

2.7.1 Theorem

Consider the LTI system shown in Figure 2.16 with stochastic input u(t, ζ), impulse response
function h(t), transfer function H(ω) and stochastic output y(t, ζ). If u(t, ζ) is a stationary and
ergodic stochastic process, then the output y(t, ζ) is also a stationary and ergodic stochastic process.
Moreover, if u(t, ζ) is Gaussian, then y(t, ζ) is also Gaussian.

LTI
u(t, ⇣) y(t, ⇣)

h(t), H(!)

Figure 2.16 – LTI system with stochastic input and output.

We would now like to relate the statistics of y(t, ζ) to those of u(t, ζ). First, note that if u(t, ζ)
is zero mean, then y(t, ζ) is also zero mean. Indeed,

E[y(t, ζ)] = E

󰀗󰁝 ∞

−∞
u(τ, ζ)h(t− τ)dτ

󰀘
=

󰁝 ∞

−∞
E [u(τ, ζ)]h(t− τ)dτ = 0.

We now move to the second-order statistics of the response. The spectrum of the output is related
to that of the input by the following Wiener-Khinchine relations:

Syy(ω) = |H(ω)|2Suu(ω).

Proof. To show this, we start from the convolution expression of the response

y(t, ζ) =

󰁝 ∞

−∞
h(τ)u(t− τ, ζ)dτ.
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The autocorrelation function of the output is then

Ryy(t, τ) = E[y(t, ζ)y(t+ τ, ζ)]

= E

󰀗󰁝 ∞

−∞

󰁝 ∞

−∞
h(τ1)h(τ2)u(t− τ1, ζ)u(t+ τ − τ2, ζ)dτ2dτ1

󰀘

=

󰁝 ∞

−∞

󰁝 ∞

−∞
h(τ1)h(τ2)E[u(t− τ1, ζ)u(t+ τ − τ2, ζ)]dτ2dτ1

=

󰁝 ∞

−∞

󰁝 ∞

−∞
h(τ1)h(τ2)Ruu(τ + τ1 − τ2)dτ2dτ1.

This shows that Ryy(t, τ) = Ryy(τ), hence y is a stationary stochastic process. Its spectrum is

Syy(ω) =

󰁝 ∞

−∞
RY Y (τ)e

−iωτdτ

=

󰁝 ∞

−∞

󰁝 ∞

−∞

󰁝 ∞

−∞
e−iωτh(τ1)h(τ2)Ruu(τ + τ1 − τ2)dτ2dτ1dτ

=

󰁝 ∞

−∞

󰁝 ∞

−∞

󰁝 ∞

−∞
e−iω(ξ+τ2−τ1)h(τ1)h(τ2)Ruu(ξ)dξdτ1dτ2, ξ = τ + τ1 − τ2

=

󰁝 ∞

−∞
e−iωξRuu(ξ)dξ

󰁝 ∞

−∞
eiωτ1h(τ1)dτ1

󰁝 ∞

−∞
e−iωτ2h(τ2)dτ2

= Suu(ω)H
∗(ω)H(ω), since h is real

= |H(ω)|2Suu(ω).

2.7.2 Applications

Example. Consider a stochastic process Y (t, ζ) governed by the first-order system

dY

dt
+ ρY = X(t, ζ),

where X(t, ζ) is a stationary stochastic process with zero mean and spectral density

SXX(ω) =
aσ2

X

a2 + ω2
.

The transfer function of the system can be calculated by taking the Fourier transform of the
governing equation, setting the input X(t, ζ) = δ(t),

iωH(ω) + ρH(ω) = 1 ⇒ H(ω) =
1

iω + ρ
.

Then, from the Wiener-Khinchine relations,

SY Y (ω) = |H(ω)|2SXX(ω) =
1

|iω + ρ|2
aσ2

X

a2 + ω2
=

1

ρ2 + ω2

aσ2
X

a2 + ω2
.

The variance of Y (t, ζ) is finally given by

σ2
Y =

1

2π

󰁝 ∞

−∞
SY Y (ω)dω =

1

π

󰁝 ∞

0
SY Y (ω)dω =

aσ2
X

π

󰁝 ∞

0

dω

(a2 + ω2)(ρ2 + ω2)
=

σ2
X

π(a+ ρ)ρ
.
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Example. Consider a vibratory system,

dY 2

dt2
+ b

dY

dt
+ kY = X(t, ζ),

where X(t, ζ) is a stationary stochastic process with zero mean and spectral density

SXX(ω) =
aσ2

X

a2 + ω2
.

As in the previous example, the transfer function of the system can be calculated by taking the
Fourier transform of the governing equation, setting the input X(t, ζ) = δ(t),

−ω2H(ω) + biωH(ω) + kH(ω) = 1 ⇒ H(ω) =
1

k − ω2 + ibω
.

Then, from the Wiener-Khinchine relations,

SY Y (ω) = |H(ω)|2SXX(ω) =
1

|k − ω2 + ibω|2
aσ2

X

a2 + ω2
=

1

(k − ω2)2 + b2ω2

aσ2
X

a2 + ω2
.

The variance of Y (t, ζ) is finally given by

σ2
Y =

1

π

󰁝 ∞

0
SY Y (ω)dω =

aσ2
X

π

󰁝 ∞

0

dω

(a2 + ω2)((k − ω2)2 + b2ω2)
=

(b+ a)σ2
X

bk(a2 + ba+ k)
.

2.7.3 Positivity of the spectrum

We can now give an indirect proof of the property, stated in Section 2.6.1, that the spectrum SUU (ω)
of a stochastic process U(t, ζ) is always non-negative. Assume that SUU (ω) < 0 for ω1 < ω < ω2.
Now, define a new stochastic process Y (t, ζ) as the output of an LTI system with input U(t, ζ) and
transfer function

|H(ω)| =
󰀫
1, ω1 < ω < ω2,

0, otherwise.

The spectrum of Y (t, ζ) can then be calculated with the Wiener-Khinchine relations

SY Y (ω) = |H(ω)|2SUU (ω) =

󰀫
SUU (ω), ω1 < ω < ω2,

0, otherwise.

However, this implies that the variance of Y (t, ζ) is negative since

σ2
Y =

1

2π

󰁝 ∞

−∞
SY Y (ω)dω =

1

2π

󰁝 ω2

ω1

SUU (ω)dω < 0,

which is impossible. Thus, we must have SUU (ω) ≥ 0 for all ω.

2.8 White noise

White noise is a special type of stationary and ergodic stochastic process X which has a flat
spectrum, that is,

SXX(ω) = S0 for all ω.
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As a result, the autocorrelation function of white noise is a delta function,

RXX(τ) = S0δ(τ).

S0 is called the intensity of white noise. Note that σ2
X = RXX(0) = ∞.

How do we construct white noise? Consider another process, the so-called Wiener process. A
stochastic process W (t, ζ) is called a Wiener process or Brownian motion, if:

1. P (W (0, ζ) = 0) = 1.

2. For arbitrary 0 < t0 < t1 < · · · < tn, the increments W (t1, ζ) − W (t0, ζ),W (t2, ζ) −
W (t1, ζ), . . . ,W (tn, ζ)−W (tn−1, ζ) are independent.

3. For any t and h > 0, the increment W (t+ h)−W (t) follows a Gaussian distribution with

E[W (t+ h, ζ)−W (t, ζ)] = 0,

E[(W (t+ h, ζ)−W (t, ζ))2] = h.

The correlation function of a Wiener process is

CWW (t1, t2) = E[W (t1, ζ)W (t2, ζ)] = E[W (t1)[W (t2, ζ)−W (t1, ζ)]] + E[W (t1, ζ)
2].

Assuming that t2 > t1, we have

E[W (t1, ζ)[W (t2, ζ)−W (t1, ζ)]] = 0,

E[W (t1, ζ)
2] = E[(W (t1, ζ)−W (0, ζ))2] = t1,

hence
CWW (t1, t2) = t1, t2 > t1.

In general,
CWW (t1, t2) = min(t1, t2).

Figure 2.17 provides intuition for the Wiener process, whose variance scales with t. Individual
realizations are everywhere continuous but nowhere differentiable.

Figure 2.17 – Wiener process.
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White noise is then defined as the generalized derivative of a Wiener process. The generalized
derivative is defined through the correlation function as

∂2CWW (t1, t2)

∂t1∂t2
= δ(t1 − t2),

hence white noise X is defined by the following correlation function

CXX(τ) = δ(τ).

The intensity of white noise is controlled by a multiplicative scalar S0.

2.9 Direct integration

An alternative approach to working in the spectral domain with the Wiener-Khinchine relations
involves direct integration in the time domain of the system governing equations. Consider, for
instance, the following Langevin equation

Ẏ = −aY +
√
2DẆ (t, ζ), Y (0) = Y0,

where W (t, ζ) is a Wiener process, and its generalized derivative is white noise. The above equation
has the following solution

Y (t, ζ) = Y0e
−at +

√
2D

󰁝 t

0
e−a(t−s)dW

ds
ds.

In contrast to the previous spectral approach, working in the time domain allows for the analysis
of initial conditions. The expected value of the solution is

E[Y ] = Y0e
−at,

since E[∆W ] = 0. Moreover, its autocovariance function is

CY Y (t1, t2) = E
󰀅
(Y (t1, ζ)− Y0e

−αt1)(Y (t2, ζ)− Y0e
−αt2)

󰀆

= 2DE

󰀗󰀕󰁝 t1

0

󰁝 t2

0
ea(s1+s2)Ẇ (s1, ζ)Ẇ (s2, ζ)ds1ds2

󰀖
e−a(t1+t2)

󰀘

= 2De−a(t1+t2)

󰁝 t1

0

󰁝 t2

0
ea(s1+s2)E

󰁫
Ẇ (s1, ζ)Ẇ (s2, ζ)

󰁬
ds1ds2

= 2De−a(t1+t2)

󰁝 t1

0

󰁝 t2

0
ea(s1+s2)δ(s1 − s2)ds1ds2

= σ2e−a|τ |
󰁫
1− e−2amin(t1,t2)

󰁬
,

with σ2 = D/a and τ = t1 − t2. Thus, for τ = 0, we find that the variance is

σ2
Y = σ2(1− e−2at).

As time goes to infinity, the expectation and covariance tend to the asymptotic limits

lim
t→∞

E[Y ] = 0, and lim
t→∞

CY Y (t, τ) = σ2e−a|τ |.
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Because the expectation and covariance no longer depend on time, the system reaches a statistical
steady state after a long time, characteristic of a stochastic attractor as illustrated in Figure 2.18.
At the beginning of the initial transient phase, the initial condition concentrates all the probability
at one point at t = 0. As time evolves, the system relaxes to its stable equilibrium while noise
pushes the state away from this equilibrium. However, damping acts to keep the size of the attractor
finite. The latter is given by the variance in the statistical steady state,

σ2
Y = σ2 =

D

a
,

with D indicating the noise intensity, and a the damping intensity. Note that for any stable
system, the picture remains the same: stable dynamics keep the system state close to the stable
equilibrium, while noise pushes the system away from it. The balance between these two competing
effects results in a stochastic attractor describing the statistical steady state of the system.

Figure 2.18 – Transient dynamics and stochastic attractor for Langevin equation.

Of course, the characteristics of the statistical steady state could have been obtained through
the spectrum. The input has spectrum

SXX(ω) = 2D,

and the transfer function corresponding to the Langevin equation is

H(ω) =
1

a+ iω
.

Applying the Wiener-Khinchine relations, we obtain the spectrum of Y in the statistical steady-
state

SY Y (ω) = |H(ω)|2SXX(ω) =
2D

a2 + ω2
,

from which we can deduce the variance in the statistical steady-state,

σ2
Y =

1

2π

󰁝 ∞

−∞

2D

a2 + ω2
dω =

D

a
.
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t

x(t)

T

Figure 2.19 – Sampling of a continuous signal.

2.10 Nyquist sampling rate

Let x(t) be a continuous signal which we want to sample every T time units, resulting in a discrete
signal xm as shown in Figure 2.19. What should T be so that we can fully recover x(t) from xm?
To answer this question, we represent the sampling process as a multiplication of x(t) with a train
of impulses p(t) defined as

p(t) =

∞󰁛

n=−∞
δ(t− nT ).

The sampled signal xp(t) then takes the form of a train of impulses scaled by the values of x(t) at
the sampling locations,

xp(t) = x(t)p(t) =

∞󰁛

n=−∞
x(t)δ(t− nT ) =

∞󰁛

n=−∞
x(nT )δ(t− nT ),

which we illustrate in Figure 2.20. What is the effect of sampling in the frequency domain? Because

t

x(t)

t t

p(t) xp(t)

T 2T�T

Figure 2.20 – Modeling of the sampling process.

xp(t) = x(t)p(t), the Fourier transform x̃p(ω) of xp(t) is simply

x̃p(ω) = x̃(ω) ∗ p̃(ω).

Let us first calculate p̃(ω), the Fourier transform of p(t). Since p(t) is periodic with period T , it
can be expressed through a Fourier series as

p(t) =

∞󰁛

k=−∞
cke

ikω0t, ω0 =
2π

T
,
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where the Fourier coefficients ck are simply

ck =
1

T

󰁝 T/2

−T/2
p(t)e−ikω0tdt =

1

T
.

Thus, we can equivalently express p(t) as

p(t) =
1

T

∞󰁛

k=−∞
eikω0t,

allowing us to write its Fourier transform as a sum of delta function,

p̃(ω) =
2π

T

∞󰁛

k=−∞
δ(ω − kω0),

since F−1[δ(ω − kω0)] = eikω0t/2π. Finally, the Fourier transform of xp(t) becomes

x̃p(ω) = x̃(ω) ∗ p̃(ω)

=

󰁝 ∞

−∞
x̃(ω − ω′)

2π

T

∞󰁛

k=−∞
δ(ω′ − kω0)dω

′

=
2π

T

∞󰁛

k=−∞

󰁝 ∞

−∞
x̃(ω − ω′)δ(ω′ − kω0)dω

′

=
2π

T

∞󰁛

k=−∞
x̃(ω − kω0).

The above result shows that x̃p(ω) is equal to a superposition of many times the function x̃(ω),
each shifted by kω0 in the frequency domain for a different integer value of k. Let us now suppose
that x̃(ω) is band-limited, that is, its Fourier transform x̃(ω) is zero for all absolute frequencies
above a cut-off frequency ωM as illustrated in Figure 2.21(a). We now need to consider separately
two cases:

1. When ω0 > 2ωM , there is no overlap of the shifted functions x̃(ω−kω0) in x̃p(ω), as shown in
Figure 2.21(b). Thus, we can recover x̃(ω) from x̃p(ω) if we filter the latter appropriately. For
instance, consider the filter defined as an LTI system with xp(t) as input and the following
transfer function:

H(ω) =

󰀫
1, −ωc ≤ ω ≤ ωc,

0, otherwise.

As long as the condition ωM < ωc < ω0 − ωM is satisfied, the output of this LTI system
(filter) would be equal to the original continuous function x(t). The action of this filter on
the input in the spectral domain is sketched by the dotted box in Figure 2.21(b).

2. When ω0 < 2ωM , there is overlap of the shifted functions x̃(ω − kω0) in x̃p(ω), as shown in
Figure 2.21(c). The resulting x̃(ω) then contains a distorted version of x̃(ω), a phenomenon
that is called aliasing. In this case, it is thus not possible to recover the original function x(t).

Therefore, in order to preserve all information, the continuous signal x(t) must be sampled at

ω0 =
2π

T
> 2ωM ,

where ωM is the bandwidth of x̃(ω). This threshold sampling rate is commonly called the Nyquist
rate of sampling.
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Figure 2.21 – Fourier transform of sampled signal xp(t) and Nyquist criterion.
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Chapter 3

Extreme Event Statistics

3.1 Extreme value theory

Extreme value theory (EVT) is often used when e.g. building dams, where the knowledge of the
statistics of extreme flooding events are required to design the specifications. To specify what EVT
is about, let {X1, X2, . . . , Xn} be random variables and define

Mn = max{X1, . . . , Xn}.

We now ask: what is the distribution of Mn? In general, it is unknown. However, in the specific
case where {Xi} are iid random variables, the answer is known and provided by EVT.

3.1.1 More on the central limit theorem

We first briefly review the central limit theorem (CLT), already covered in Section 1.10. Let {Xi}
be iid random variables with mean µ and variance σ2, and define the following sum

Sn = X1 + · · ·+Xn.

Then, by the central limit theorem (CLT), in the limit n → ∞, the pdf of Sn will converge to that
of a Gaussian random variable with mean nµ and variance nσ2. This implies that the mean and
variance of Sn grow unbounded as n increases, hence the limit n → ∞ can be seen as degenerate.
On the other hand, we can also define the rescaled sum,

Zn =
Sn − nµ

σ
√
n

,

which will converge to a Gaussian random variable with zero mean and unit variance as n → ∞,
that is,

P (Zn ≤ z) =

󰁝 z

−∞

1√
2π

e−z2/2dz.

Thus, we have used a rescaling of the form (Sn − an)/bn, where an = nµ and bn = σ
√
n, to obtain

a random variable that follows a normal Gaussian distribution. We will follow a similar strategy
for finding a non-degenerate distribution for Mn.
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3.1.2 Extremal types theorem

The below presentation follows [2]. As in the CLT, let {Xi} be iid random variables with cdf
P (Xi ≤ x) = F (x). Defining

Mn = max{X1, . . . , Xn},

what is the distribution of Mn as n → ∞? A preliminary calculation shows that

P (Mn ≤ x) = P (max{X1, X2, . . . , Xn} ≤ x)

= P (X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x)

= P (X1 ≤ x)P (X2 ≤ x) . . . P (Xm ≤ x)

= F (x)F (x) . . . F (x)

= F (x)n,

where we have used independence of the {Xi}. Recall now that F is an increasing function of x, and
0 ≤ F (x) ≤ 1. Thus, we define the right endpoint of the distribution as xmax = max{x : F (x) < 1},
such that 󰀫

F (x) < 1, x < xmax,

F (x) = 1, x > xmax.

Note that xmax, so defined, may be infinity (for instance in the case of a Gaussian distribution).
Going back to the distribution of Mn, we thus have

lim
n→∞

P (Mn ≤ x) = lim
n→∞

Fn(x) =

󰀫
0, xmax,

1, x > xmax.

Thus, the pdf of Mn tends to a delta function as n → ∞ and the behavior of Mn can also
be considered degenerate in this limit, similarly to the case of Sn in the CLT. This is pictured in
Figure 3.1. On the other hand, the following theorem assures that we can define a suitable rescaling
of the form (Mn − an)/bn which converges to a well-defined distribution in the limit n → ∞.

xxmax

F (x) lim
n!1

Fn(x) lim
n!1

d

dx
Fn(x)

xxmax xxmax

11

Figure 3.1 – Cdf of {Xi} and Mn, and pdf of Mn.

Theorem (Extremal Types Theorem). If X1, X2, . . . is a sequence of iid random variables and
there exists a sequence {an}, {bn} of real numbers such that each bn > 0 and

lim
n→∞

P

󰀕
Mn − an

bn
≤ y

󰀖
= G(y)

at all continuity points of G(y), with G(y) a non-degenerate function, then the limiting distribution
G(y) can only be one of three types:
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(I) G(y) = e−e−y
, (Gumbel),

(II) G(y) = e−y−α
, (α > 0), for y > 0, (Fréchet),

(III) G(y) = e−(−y)α , (α > 0), for y < 0, (Weibull).

Note: The above definitions of the limiting distributions are the standard Gumbel, Frećhet, and
Weibull distributions. We can define the distributions more generally by replacing y with (y−m)β−1

for some location parameter m and scale parameter β > 0.

3.1.3 Domains of attraction

Given the distribution of {Xi}, and without computing Mn, do we know which of the three types
does the limiting distribution of Mn belong to as n → ∞? We do! The limiting distribution G(y)
only depends on the behavior of F (x) as its tail, that is,

lim
x→xmax

F (x) = 1, or equivalently, lim
x→xmax

1− F (x) = 0.

The behavior at the tail means how fast 1− F (x) converges to zero as x → xmax. There are three
possible cases:

(I) If xmax < ∞ and

lim
x→xmax

1− F (x)

(x− xmax)m
= 0,

for all m ∈ N, or xmax = ∞ and

lim
x→xmax

1− F (x)

xm
= 0,

for all m ∈ N, then G(y) is the Gumbell distribution. Note that this condition means that
1− F (x) tends to zero at its tail faster than any polynomial.

(II) If xmax = ∞ and
1− F (x) ∼ x−α,

for some α > 0, then G(y) is the Fréchet distribution with parameter α.

(III) If xmax < ∞ and
1− F (x) ∼ (xmax − x)α,

for some α > 0, then G(y) is the Weibull distribution with parameter α.

These three cases completely characterize the domains of attraction of the three distributions and
can be illustrated in Figure 3.2. In Table 3.1, we list the type of the limiting distribution G(y) that
corresponds to various kinds of distributions F (x) of {Xi}.
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M1

M2 M3

Fréchet

Weibull
Gumbel

all possible
distributions

domain of attraction
of Gumbel

domain of attraction
of Fréchet

domain of attraction
of Weibull

Figure 3.2 – Domains of attraction of the three possible limiting distributions.

Xi ∼ F (x) Mn ∼ G(y)

Normal, Exponential, Lognormal, Gamma Gumbel
Pareto, Cauchy, Student, Burr Fréchet

Uniform, Beta Weibull

Table 3.1 – Types of limiting distribution G(y) corresponding to given distributions F (x) of {Xi}.

3.1.4 A specific example

Consider a distribution in the second category. That is, xmax = ∞ and

1− F (x) ∼ x−α.

We will find sequences an and bn defined in terms of F (x) such that

lim
n→∞

P

󰀕
Mn − an

bn
≤ y

󰀖
= e−y−α

.

We first define the quantile function as

Q(p) = inf {x : F (x) ≥ p}.

This returns the smallest x such that the cdf evaluated at x is greater than or equal to p. If F is
smooth (there are no point masses in the pdf) and strictly increasing (there are no intervals where
the pdf is zero) then this is simply the inverse of the cdf F ,

Q(p) = F−1(p), for 0 ≤ p ≤ 1.

Now let an = 0 and bn = Q(1− n−1). Using the definition of bn and Q, we can find F (bn) as

F (bn) = F (Q(1− n−1))

= F (F−1(1− n−1))

= 1− n−1.
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Alternatively we know from the assumed asymptotic behavior of F that

F (bn) ∼ 1− b−α
n ,

and therefore that the asymptotic behavior of bn is

b−α
n ∼ n−1.

Now, considering the limiting behavior of (Mn − an)/bn we have

lim
n→∞

P

󰀕
Mn − an

bn
≤ y

󰀖
= lim

n→∞
P (Mn ≤ bny)

= lim
n→∞

Fn (bny)

∼ lim
n→∞

(1− b−α
n y−α)n

= lim
n→∞

󰀕
1− y−α

n

󰀖n

= e−y−α
.

This sequence is not unique in admitting a non-degenerate function. Scaling bn and using nonzero
an can yield Fréchet distributions with different location and scale parameters. Take, for example,

bn = nα−1
β−1

an = mbn

for any m and β > 0. Then,

lim
n→∞

P

󰀕
Mn − an

bn
≤ y

󰀖
= lim

n→∞
P (Mn ≤ bny − an)

= lim
n→∞

P
󰀓
Mn ≤ nα−1

β−1(y −m)
󰀔

= lim
n→∞

Fn
󰀓
nα−1

β−1(y −m)
󰀔

∼ lim
n→∞

󰀕
1−

󰀓
nα−1

β−1(y −m)
󰀔−α

󰀖n

= lim
n→∞

󰀣
1− 1

n

󰀕
y −m

β

󰀖−α
󰀤n

= e
−
󰀓

y−m
β

󰀔−α

3.1.5 Generalized extreme value distribution

Finally, we note that the three types of limiting distributions can be unified through the following
generalized extreme value (GEV) distribution,

H(y; ξ) = e−(1+ξy)−1/ξ
.

Indeed, the above GEV distribution reduces to one of the three types depending on the value of
the parameter ξ:

(I) when ξ → 0, H(y; ξ) → Gumbel,

(II) when ξ > 0, H(y; ξ) → Fréchet with parameter α = 1/ξ,

(III) when ξ < 0, H(y; ξ) → Weibull with parameter α = −1/ξ.
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3.2 Statistics of extremes in stochastic processes

Previously, we have characterized the distribution of the maximum of an iid sequence of random
variables. What about stochastic processes, which have memory (encoded in the autocorrelation
function)? We ask various questions:

1. What is the frequency of upcrossings past a given level?

2. What is the frequency of local maxima larger than a given value?

3. What is the pdf describing the statistics of local maxima?

3.2.1 One-sided spectrum and bandwidth

First, we define the notions of one-sided spectrum and spectrum bandwidth. Given a (two-sided)
spectrum S(ω), the one-sided spectrum is defined as

S+(ω) =

󰀻
󰀿

󰀽

1

π
S(ω), ω ≥ 0,

0, ω < 0,

see Figure 3.3. The variance of the stochastic process corresponding to S(ω) can be expressed as

σ2 = R(0) =
1

2π

󰁝 ∞

−∞
S(ω)dω =

2

2π

󰁝 ∞

0
S(ω)dω =

󰁝 ∞

0
S+(ω)dω.

Hence, the one-sided spectrum S+(ω) is a convenient way to directly represent the distribution
of energy contained in the stochastic process over different frequencies. Note that because the
two-sided spectrum is even, we have not lost any information in defining S+(ω), and S(ω) can be
recovered in a straightforward manner from S+(ω).

S(!) S+(!)

! !

Figure 3.3 – Two-sided and one-sided spectra.

Next, we define the moments of the spectrum as

M0 =

󰁝 ∞

0
S+(ω)dω,

M2 =

󰁝 ∞

0
ω2S+(ω)dω,

M4 =

󰁝 ∞

0
ω4S+(ω)dω,

which allow us to introduce a measure of the bandwidth 󰂃 of the spectrum,

󰂃2 = 1− M2
2

M0M4
.

The bandwidth 󰂃 admits the following two asymptotic limits:
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1. For 󰂃 → 0, the spectrum is called narrow-banded, see Figure 3.4(a).

Indeed, for S+(ω) = δ(ω − ω0), we have M0 = 1, M2 = ω2
0, and M4 = ω4

0, hence 󰂃 = 0.

2. For 󰂃 → 1, the spectrum is called wide-banded, see Figure 3.4(b).

S+(!)

!

S+(!)

!

(a)

(b)

X(t)

t

t

X(t)

Figure 3.4 – Narrow-banded spectrum (a), wide-banded spectrum (b), and corresponding time
realizations.

3.2.2 Frequency of upcrossings past a given level

Consider the stochastic process picture in Figure 3.5. We define n̄(A), the average frequency of
upcrossings past level A, and n̄(0), the average frequency of upcrossings past zero level. The average
period between two upcrossings of level zero is then T̄ = 1/n̄(0). As we will see below, for Gaussian,
stationary and ergodic stochastic processes, we have

n̄(A) =
1

2π

󰁵
M2

M0
e−A2/2M0 ,

hence setting A = 0 we obtain

n̄(0) =
1

2π

󰁵
M2

M0
=

1

T̄
,

and therefore

n̄(A) =
1

T̄
e−A2/2M0 .

Example. Consider the platform picture in Figure. The water waves have average period T̄ = 8
sec, and standard deviation σ = 2 m. How to choose the height h of the deck above the (mean)
water surface so that the deck is flooded every 10 min? We want

n̄(h) =
1

T̄
e−h2/2σ2

=
1

10min
⇒ h = 5.07m.
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t

X(t)

A

Figure 3.5 – Upcrossing rates past level A.

h
water surface

seabed

platform

Figure 3.6 – Platform in rough sea conditions.

Let us now prove the formula for the average frequency of upcrossings. We build a counter
function, that is, a function that counts the number of upcrossings, according to the process outlined
in Figure 3.7. First, we build the function f1(t) that identifies the regions where X(t) ≥ a,

f1(t) = u(X(t)− a),

where u is the Heaviside function, defined as

u(x) =

󰀫
1, x ≥ 0,

0, x < 0.

Then, we take the derivative of f1(t) to obtain the function f2(t), which identifies both upcrossings
and downcrossings past level a of X(t),

f2(t) =
df1
dt

.

Finally, we only keep upcrossings by defining f3(t) as

f3(t) = f2(t)u(Ẋ(t)).

Thus, we have obtained the counter function

f3(t) = δ(X(t)− a)Ẋ(t)u(Ẋ(t)).
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X(t)
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t

f1(t)

a

f2(t)

f3(t)

t

Figure 3.7 – Building a counter for the number of upcrossings above a.

The number of upcrossings past a that happen in a given time T is then simply

N(T ) =

󰁝 T

0
Ẋ(t)δ(X(t)− a)u(Ẋ(t))dt,

and the average frequency of upcrossings follows as

n̄(a) = lim
T→∞

N(T )

T
= lim

T→∞

1

T

󰁝 T

0
Ẋ(t)δ(X(t)− a)u(Ẋ(t))dt.

Now, we use ergodicity of X(t) to translate this time average to an ensemble average

n̄(a) = E
󰁫
Ẋδ(X − a)u(Ẋ)

󰁬

=

󰁝 ∞

−∞

󰁝 ∞

−∞
ẋδ(x− a)u(ẋ)fXẊ(x, ẋ)dxdẋ

=

󰁝 ∞

0
ẋfXẊ(a, ẋ)dẋ.

The above is called the Rice formula. Assuming that X and Ẋ are uncorrelated Gaussian stochastic
processes, the joint distribution fXẊ is simply

fXẊ(x, ẋ) = fX(x)fẊ(ẋ) =
1√

2πσX
e−x2/2σ2

X
1√

2πσẊ
e−ẋ2/2σ2

Ẋ .
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Note that X and Ẋ are uncorrelated since

E[XẊ] = lim
T→∞

1

2T

󰁝 T

−T
X(t)Ẋ(t)dt = lim

T→∞

1

2T

X(t)2

2

󰀏󰀏󰀏󰀏
T

−T

= 0,

where we have used stationarity of X(t) to ensure that it remains finite as t goes to infinity. We
finally obtain, after integration,

n̄(a) =
1

2π

σẊ
σX

e−a2/2σ2
X ,

where

σ2
X =

󰁝 ∞

0
S+
X(ω)dω = M0,

σ2
Ẋ

=

󰁝 ∞

0
S+
Ẋ
(ω)dω =

󰁝 ∞

0
ω2S+

X(ω)dω = M2.

3.2.3 Frequency of local maxima past a given level

t

X(t)

t

t

f1(t)

a

f2(t)

f3(t)

t

Figure 3.8 – Building a counter for the number of local maxima above a.

We are now interested in quantifying the average frequency of local maxima larger than a
certain value a. As done in the previous section, we build a counter function according to the
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process outlined in Figure 3.8. First, we build the function f1(t) that identifies regions of positive
slope

f1(t) = u(Ẋ(t)),

where u is the Heaviside function defined previously. Then, we take the derivative of f1(t) to obtain
the function f2(t), which identifies both local minima and local maxima of X(t),

f2(t) =
df1
dt

.

Finally, we discard local minima and we only keep those local maxima that are above level a. This
is done by defining f3(t) as

f3(t) = −f2(t)u(−Ẍ(t))u(X(t)− a),

with the minus to make the remaining delta functions become positive. Thus, we have obtained
the counter function

f3(t) = −δ(Ẋ(t))Ẍ(t)u(X(t)− a)u(−Ẍ(t)).

The number of local maxima above a that happen in a given time T is then simply

N(T ) =

󰁝 T

0
−δ(Ẋ(t))Ẍ(t)u(X(t)− a)u(−Ẍ(t))dt,

and the average frequency of local maxima above a follows as

n̄m(a) = lim
T→∞

N(T )

T
= lim

T→∞

1

T

󰁝 T

0
−δ(Ẋ(t))Ẍ(t)u(X(t)− a)u(−Ẍ(t))dt.

Now, we use ergodicity of X(t) to translate this time average to an ensemble average

n̄m(a) = E
󰁫
−Ẍδ(Ẋ)u(X − a)u(−Ẍ)

󰁬

= −
󰁝 ∞

−∞
dẍ

󰁝 ∞

−∞
dẋ

󰁝 ∞

−∞
dx ẍδ(ẋ)u(x− a)u(−ẍ)fXẊẌ(x, ẋ, ẍ)

= −
󰁝 0

−∞
dẍ

󰁝 ∞

a
dx ẍfXẊẌ(x, 0, ẍ).

For Gaussian stochastic processes, this becomes

n̄m(a) = −
󰁝 0

−∞
dẍ

󰁝 ∞

a
dx ẍ

1
√
2π

3

1√
M2∆

e−Q/2,

where

Q =
ẋ2

2M2
+

M4x
2 + 2M2xẍ+M0ẍ

2

∆
, and ∆ = M0M4 −M2

2 ,

and the average frequency of all local maxima (above any level) is

n̄m(a = −∞) =
1

2π

󰁵
M4

M2
.
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3.2.4 Upcrossing rates of a transformed process

Let X(t) a stationary stochastic process with average upcrossing rates n̄X(a), and define

Y (t) = h(X(t)),

where h is a given function. What is the rate of upcrossings for Y (t)? If, for any given level b of
the stochastic process Y (t), the equation h(a) = b has n solutions a1, . . . , an (see Figure 3.9), then
the rate of upcrossings past b of Y (t) is given by

n̄Y (b) =

n󰁛

j=1

n̄X(aj).

X

Y

b

a1 a2 a3 a4

Figure 3.9 – Upcrossing rates of a transformed process.

Example. Let X be a Gaussian, stationary and ergodic stochastic process, with

n̄X(a) =
1

2π

σẊ
σX

e−a2/2σ2
X .

What is n̄Y (b) for Y = X2? We first solve

b = a2 ⇒ a1,2 = ±
√
b,

then according to the formula we have

n̄Y (b) = n̄X(a1) + n̄X(a2) =
1

2π

σẊ
σX

󰀓
e−b/2σ2

X + e−b/2σ2
X

󰀔
=

1

π

σẊ
σX

e−b/2σ2
X .

3.3 Distribution of derivative at upcrossings

The previous section involves the frequency of upcrossings for a stationary stochastic process,
X(t). For a wide of problems it is also essential to know the probability distribution function of
the upcrossing velocity at a given level a: va = Ẋ(t|X = a), i.e. the velocity at the moment
of upcrossing. This is relevant, for example, in the ship slamming problem. Below we present a
derivation of analytical expression for this case [1].

Let U describe the upcrossing event at time t:

U = {X(t) < a} ∩ {X(t+ dt) > a}

Obviously, in order to have an upcrossing we need positive velocity at that time. Let us define as
V the event where the upcrossing velocity is positive but smaller than v:

V =
󰁱
Ẋ(t) > 0

󰁲
∩
󰁱
Ẋ(t) ≤ v

󰁲
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The cumulative distribution function for the velocity at the moment of the upcrossing is given by

Fv(v; a) = P (V |U) =
P (V ∩ U)

P (U)
, v ≥ 0.

We now compute each of the terms involved. We first express the intersection of the events U and
V as a system of inequalities:

U ∩ V =

󰀻
󰀿

󰀽

X(t) < a
X(t+ dt) > a

Ẋ(t) < v

󰀼
󰁀

󰀾 =

󰀻
󰀿

󰀽

X(t) < a
X(t) > a− ẋ(t)dt

Ẋ(t) < v

󰀼
󰁀

󰀾

The probability of this event can be expressed with the following integral using the joint pdf,
fXẊ(x, ẋ):

P (U ∩ V ) =

󰁝 v

0

󰁝 a

a−ẋdt
fXẊ(x, ẋ)dxdẋ

Note that the limits of the inner integral differ only by an infinitesimal quantity, ẋdt. Based on
this observation the above integral can be written as

P (U ∩ V ) =

󰁝 v

0
ẋfXẊ(a, ẋ)dẋdt

Using a similar argument we have the probability of the event U where we still need the requirement
of a positive upcrossing velocity, Ẋ(t) > 0:

P (U) =

󰁝 ∞

0
ẋfXẊ(a, ẋ)dẋdt

Using the last two expression we finally obtain:

Fv(v; a) =

󰁕 v
0 ẋfXẊ(a, ẋ)dẋ󰁕∞
0 ẋfXẊ(a, ẋ)dẋ

, v ≥ 0.

For the special case of independent velocity and position, fXẊ(x, ẋ) = fX(x)fẊ(ẋ) we have

Fv(v) =

󰁕 v
0 ẋfẊ(ẋ)dẋ󰁕∞
0 ẋfẊ(ẋ)dẋ

, v ≥ 0,

and as we observe the cumulative distribution of the upcrossing velocity does not depend on the
upcrossing level a. From the last expression we can obtain the pdf of the upcrossing velocity:

fv(v) =
vfẊ(v)󰁕∞

0 ẋfẊ(ẋ)dẋ
, v ≥ 0.

As it can be easily seen for the case of a normally distributed velocity, the upcrossing velocity
follows a Rayleigh distribution.

3.4 Extreme value distribution over a given time interval

Let X(t) a stationary stochastic process, and T a time interval. We define

M(T ) = max{X(t) : 0 ≤ t ≤ T},
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θ(a) = first time that X(t) crosses a.

We want to find
P (M(T ) ≤ a) = P (θ(a) ≥ T ),

for a narrow-banded stochastic process (that is, 󰂃 ≃ 0). These events are independent, in which
case we can model them through a Poisson process. Denoting the rate of hits for this Poisson
process as n̄X(a), the cdf of M(T ) is

FM(T )(a) = P (M(T ) ≤ a) = 1− P (θ(a) ≤ T ) = 1−
󰀓
1− e−n̄X(a)T

󰀔
= e−n̄X(a)T ,

where we have used the formula for the distribution of the first arrival time of a Poisson process
from Section 1.12.2.

3.5 Extreme value distribution over long time intervals

Recall that we have previously derived n̄m(a), the rate of local maxima above level a,

n̄m(a) = −
󰁝 ∞

a
du

󰁝 0

−∞
dv vfXẊẌ(u, 0, v).

From this, we can find the rate of maxima above any level as

n̄m(−∞) = lim
a→∞

n̄m(a).

Thus, the cumulative distribution of local maxima is simply

P (maxX ≥ a) =
number of maxX ≥ a

number of maxX
=

average rate of maxX ≥ a

average rate of maxX
=

n̄m(a)

n̄m(−∞)
,

hence
FM (a) = P (maxX ≤ a) = 1− P (maxX ≥ a),

and the pdf follows as

fM (a) =
dFM (a)

da
.

For a Gaussian, stationary and ergodic stochastic process, this results in the following distribution
of local maxima (see [3], p.298)

fM (a) =

󰀕
󰂃2

2πσ2
X

󰀖1/2

e−a2/2󰂃2σ2
X +

√
1− 󰂃2

σ2
X

au(a)Φ

󰀣√
1− 󰂃2a

σX󰂃

󰀤
e−a2/2σ2

X , a ∈ R,

and u(a) is the step function. In the narrow-band limit, for 󰂃 = 0, the above general formula
reduces to the Rayleigh distribution,

fM (a) =
a

σ2
X

e−a2/2σ2
X , 0 ≤ a < ∞,

while in the broad-band limit, for 󰂃 = 1, we obtain the Gaussian distribution,

fM (a) =
1󰁴
2πσ2

X

e−a2/2σ2
X , −∞ < a < ∞.

Note that the Rayleigh distribution is restricted to positive values of a because a narrow-band
stochastic process cannot have local maxima below zero due to the presence of one main frequency
component; see Figure 3.4. Moreover, still for the case of narrow-bad stochastic processes, the
statistics of local maxima (described by the Rayleigh distribution) are related to the statistics of
the envelope, since the latter goes through the local maxima.
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3.5.1 The 1/Nth largest maxima

Let us call a1, a2, . . . , an, . . . the local maxima, as pictured in Figure 3.10. We define the 1/Nth
largest maxima, a1/N , as the value that is exceeded by 1/N of the local maxima. For instance, a1/10
is the value that is exceeded by 10% of the maxima. How to calculate a1/N from the probability
distribution of the local maxima?

t

X(t)
a5

a6

a7

a8
a1
a2

a3

a4

Figure 3.10 – 1/Nth largest maxima.

For simplicity, we focus on the case 󰂃 = 0, for which the distribution of local maxima follows
the Rayleigh distribution

fM (a) =
a

σ2
X

e−a2/2σ2
X , 0 ≤ a < ∞.

Integrating the above formula, we obtain the cdf

FM (η0) = P (η ≤ η0) = 1− e−η20/2, 0 ≤ η0 < ∞,

where η = a/σX is a rescaled height. We then want to find the value η1/N such that

P (η ≥ η1/N ) =
1

N
⇒ 1− FM (η1/N ) =

1

N

⇒ e−η1/N
2
/2 =

1

N

⇒ η1/N =
󰁳
2 logN =

a1/N

σX
.

In the general case 0 < 󰂃 < 1, the value above which 1/N of the local maxima will lie is

η1/N =

󰁹󰁸󰁸󰁷2 log

󰀣
2
√
1− 󰂃2

1 +
√
1− 󰂃2

N

󰀤
=

a1/N

σX
.

3.5.2 The 1/Nth largest average maxima

We now define the 1/Nth largest average maxima, ā1/10, as the average value of all local maxima

above η1/N . Focusing again on the case 󰂃 = 0, for which the distribution of local maxima follows
the Rayleigh distribution,

fM (η) = ηe−η2/2, 0 ≤ η < ∞,

71



we can readily calculate

η̄1/N =
ā1/N

σX
=

󰁝 ∞

η1/N
η fM (η|η > η1/N )dη

=

󰁝 ∞

η1/N
η
fM (η ∩ η > η1/N )

P (η > η1/N )
dη

=

󰁝 ∞

η1/N
η
fM (η)

1/N
dη

= N

󰁝 ∞

η1/N
η2e−η2/2dη.

The 1/3 highest average maxima ā1/3 is called the significant amplitude, and the significant wave
height is defined as twice the significant amplitude, H̄1/3 = 2ā1/3. For 󰂃 = 0, we have η̄1/3 = 2,
hence ā1/3 = 2σX , and H̄1/3 = 4σX .

3.6 Summary on short-term statistics

Let X(t) be a stationary and ergodic stochastic process. We have characterized the statistics of
the extreme values of X(t) in the following ways:

1. Measure of bandwidth:

󰂃2 = 1− M2
2

M0M4
, where M0,2,4 =

󰁝 ∞

0
ω0,2,4S+(ω)dω.

Limiting cases: 󰂃 = 0 (narrow-band), 󰂃 = 1 (broad-band); see Figure 3.4.

2. Frequency of upcrossings past level a:

n̄(a) =

󰁝 ∞

0
ẋfXẊ(a, ẋ)dẋ.

For Gaussian stochastic processes, this reduces to

n̄(a) =
1

2π

󰁵
M2

M0
e−a2/2M0 .

3. Frequency of local maxima above level a:

n̄m(a) = −
󰁝 0

−∞

󰁝 ∞

a
ẍfXẊẌ(x, 0, ẍ)dxdẍ.

For Gaussian stochastic processes, this becomes

n̄m(a) = −
󰁝 0

−∞
dẍ

󰁝 ∞

a
dx ẍ

1
√
2π

3

1√
M2∆

e−Q/2,

where

Q =
ẋ2

2M2
+

M4x
2 + 2M2xẍ+M0ẍ

2

∆
, and ∆ = M0M4 −M2

2 ,

and the average frequency of all local maxima (above any level) is

n̄m(−∞) =
1

2π

󰁵
M4

M2
.
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4. Frequency of upcrossings past level b for transformed stochastic process Y = h(X):

n̄Y (b) =

n󰁛

j=1

n̄X(aj),

where aj is solution of h(aj) = b.

5. Probability distribution of maxima over finite time T :

M(T ) = max{X(t) : 0 ≤ t ≤ T},
P (M(T ) ≤ a) = e−n̄(a)T , for large a.

6. Probability distribution of maxima over long times (for Gaussian stochastic processes):

fM (a) =
a

M0
e−a2/2M0 , 0 ≤ a < ∞, for 󰂃 = 0 (narrow-band limit),

fM (a) =
1√

2πM0
e−a2/2M0 , −∞ < a < ∞, for 󰂃 = 1 (broad-band limit).

7. Average of all 1/Nth largest maxima (for Gaussian stochastic processes):

ā1/N =

󰁹󰁸󰁸󰁷2M0 log

󰀣
2
√
1− 󰂃2

1 +
√
1− 󰂃2

N

󰀤
.

Significant wave height:
H̄1/3 = 2ā1/3 (= 4σX for 󰂃 = 0).

3.7 Long-term statistics

3.7.1 Exceedance probability

Short-term statistics are valid over a period of up to a few days, during which the spectrum
characterizing the stochastic process can be considered constant. Long-term statistics can be seen
as the “sum” of several short-term statistics, each with different spectra.

Example. To describe the long-term statistics of the sea surface during a series of storms, we
first characterize each storm i through its spectrum S+

i (ω), which is parameterized in terms of the

significant height H̄
1/3
i and average period T̄i corresponding to that storm, as done in Table 3.2.

Storm H̄1/3 T̄ Probability

1 2 m 4 s 0.05
2 3 m 5 s 0.08
...

Table 3.2 – Table of storm statistics.

73



During storm i, assuming Gaussian statistics, the frequency of exceeding level a0 is

λi =
1

2π

󰁶
M2,i

M0,i
e−a20/2M0,i =

1

T̄i
e−a20/2M0,i =

1

T̄i
µi.

If T is the life of the structure, then the total duration of each storm i is

Ti = TPi,

where Pi is the probability of storm i. Then, the total number of exceedances of a0 in storm i is

Ni = λiTi =
µi

T̄i
PiT,

and the total number of exceedances of level a0 over all storms is

Na0 =
󰁛

i

Ni =
󰁛

i

T

T̄i
Pie

−a20/2M0,i .

For a narrow-band stochastic process, we have seen that H̄
1/3
i ≃ 4

󰁳
M0,i, hence M0,i ≃ (H̄

1/3
i /4)2

and

Na0 =
󰁛

i

T

T̄i
Pie

−2h2
0/(H̄

1/3
i )2 ,

where we have defined h0 = 2a0. The total number of cycles is found by setting a0 = 0, that is,

N0 =
󰁛

i

T

T̄i
Pi.

The long-term probability of exceeding level h0 is thus

P (h > h0) =
Na0

N0
=

󰁓
i T/T̄i Pie

−2h2
0/(H̄

1/3
i )2

󰁓
i T/T̄i Pi

=
E[1/T̄ e−2h2

0/(H̄
1/3)2 ]

E[1/T̄ ]
.

In practical calculations the effect of T̄ is relatively small, hence its can be treated as a deterministic
variable and we finally have

P (h > h0) = E
󰁫
e−2h2

0/(H̄
1/3)2

󰁬
.

3.7.2 The 100-year wave h100

The 100-year wave h100 is defined as the wave height h100 that will be exceeded on average once in
100 years, that is,

P (h > h100) = E
󰁫
e−2h2

100/(H̄
1/3)2

󰁬
=

N(waves above h100)

N0
=

1

100 years/T̄
.

3.7.3 How safe is the design based on the 100-year wave?

A structure is designed to just barely withstand the 100-year wave. Its desired lifetime is M years.
What is the probability of failure during its lifetime?

We model the waves as a sequence of independent events. We have

P (structure fails) = P (at least one wave above h100) = 1− P (no wave above h100).
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Denoting NM the number of waves in M years and using a Bernoulli process, we have

P (no wave above h100) = qNM ,

where q is the probability that any single wave is below h100. To find q, note that the probability
p that any particular wave is above h100 is by definition equal to 1/N100 ≪ 1, hence

q = 1− p = 1− 1

N100
≃ e−1/N100 .

where we have expressed the difference of the two terms as exponential using a Taylor approxima-
tion. Finally,

P (structure fails) = 1− qNM ≃ 1− e−NM/N100 = 1− e−M/100.

Table 3.3 indicates P (structure fails) for different vales of M .

M (years) Probability of failure

1 1%
5 4.9%
10 9.5%
20 18.1%
50 39.3%
100 63.2%

Table 3.3 – Probability of failure of design based on h100.
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Chapter 4

Laplace Transform and System
Analysis

4.1 Laplace transform

The Fourier transform that we have seen earlier requires the function to be absolutely integrable,
that is, 󰁝 ∞

−∞
|x(t)|dt < ∞.

When analyzing unstable systems, however, one often encounters responses growing in time, for
which the Fourier transform does not converge. The Laplace transform is a generalized version of
the Fourier transform that exists for a much broader range of functions. More specifically, consider
a function y(t) such that y(t) = 0 for t < 0, and

󰁝 ∞

−∞
|y(t)|dt = ∞,

for example the function pictured in Figure 4.1. If there exists a real a0 such that
󰁝 ∞

−∞
|y(t)e−a0t|dt < ∞,

then the “weighted” function y(t)e−at, a ≥ a0, is absolutely integrable and we can find its Fourier
transform

F [y(t)e−at] =

󰁝 ∞

0
y(t)e−ate−iωtdt =

󰁝 ∞

0
y(t)e(a+iω)tdt,

which is a function of both a and ω. We can now define the complex variable s = a+ iω, and define
the Laplace transform of y(t) as

ŷ(s) = L[y(t)] = F [y(t)e−at] =

󰁝 ∞

0
y(t)e−stdt, Re[s] ≥ a0.

By taking the inverse Fourier transform, we have

y(t)e−at = F−1[ŷ(a+ iω)] =
1

2π

󰁝 ∞

−∞
ŷ(a+ iω)eiωtdω,

thus

y(t) =
1

2π

󰁝 ∞

−∞
ŷ(a+ iω)eateiωtdω.
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With the change of variables s = a+ iω, ds = idω, we obtain the inverse Laplace transform,

y(t) = L−1[ŷ(s)] =
1

2πi
lim
ω→∞

󰁝 a+iω

a−iω
ŷ(s)estds, Re[s] ≥ a0.

t

y(t)

Figure 4.1 – A non-absolutely integrable function.

The evaluation of the inverse Laplace transform requires integration in the complex s-plane
along a path parallel to the imaginary axis, such that Re[s] ≥ a0. This defines the region of
convergence (ROC) of the Laplace transform; see Figure 4.2.

Re[s]

Im[s]

a0

ROC

path of integration for
inverse Laplace transform

Figure 4.2 – Region of convergence (ROC) of the Laplace transform.

In summary, for a function y(t) such that y(t) = 0, t < 0, the direct and inverse Laplace
transforms are defined respectively as

ŷ(s) = L[y(t)] =
󰁝 ∞

0
y(t)e−stdt,

y(t) = L−1[ŷ(s)] =
1

2πi
lim
ω→∞

󰁝 a+iω

a−iω
ŷ(s)estds.

These are defined only for Re[s] ≥ a0, the region of convergence. The Laplace transform possesses
the following properties:

1. L[ag(t) + bh(t)] = aL[g(t)] + bL[h(t)].

2. L
󰀗
df

dt

󰀘
=

󰁝 ∞

0

df

dt
e−stdt = f(t)e−st

󰀏󰀏∞
0

+

󰁝 ∞

0
f(t)se−stdt = −f(0) + sL[f(t)].

77



L
󰀗
d2f

dt2

󰀘
= −df

dt

󰀏󰀏󰀏󰀏
t=0

+ sL
󰀗
df

dt

󰀘
= −df

dt

󰀏󰀏󰀏󰀏
t=0

− sf(0) + s2L[f(t)].

3. Final value theorem: if limt→∞ f(t) exists, then

lim
t→∞

f(t) = lim
s→0

sf̂(s).

Proof. We write

L
󰀗
df

dt

󰀘
=

󰁝 ∞

0

df

dt
e−stdt = sf̂(s)− f(0).

Taking the limit as s → 0, we get

lim
s→0

sf̂(s) = lim
s→0

󰁝 ∞

0

df

dt
e−stdt+f(0) =

󰁝 ∞

0

df

dt
lim
s→0

e−stdt+f(0) =

󰁝 ∞

0

df

dt
dt+f(0) = lim

t→∞
f(t).

4. L[f(t) ∗ g(t)] = L[f(t)] · L[g(t)].

Examples. Common Laplace transforms:

1. L[1] =
󰁝 ∞

0
e−stdt =

1

s
, Re[s] > 0.

2. L[t] =
󰁝 ∞

0
te−stdt =

1

s2
, Re[s] > 0.

3. L[eλt] =
󰁝 ∞

0
e(λ−s)tdt =

1

s− λ
, Re[s] > λ.

4. L[tkeλt] =
󰁝 ∞

0
tke(λ−s)tdt =

k!

(s− λ)k+1
, Re[s] > λ.

4.2 Solving linear systems with the Laplace transform

4.2.1 Computing the inverse Laplace transform

To compute the inverse Laplace transform, one needs in principle to evaluate an integral in the
complex s-plane, along a path parallel to the imaginary axis as shown in Figure 4.2. In practice,
we can avoid computing explicitly this integral by using partial fractions expansion to expand the
Laplace transform into a sum of simple fractions, which can then be converted to the time domain
using Laplace transform tables or the few common Laplace transforms listed in the above section.
In systems analysis, the Laplace transform is usually of the form

ŷ(s) =
N(s)

D(s)
=

N(s)

(s− λ1)k1 . . . (s− λn)kn
,

where N(s) and D(s) are polynomials, and the degree of N(s) is at most equal to that of D(s).
We define the roots λi of D(s) as the poles of ŷ(s), and the multiplicity ki of each root as the order
of the corresponding pole. Then, using partial fractions expansion we can expand ŷ(s) as

ŷ(s) =

n󰁛

i=1

ki󰁛

j=1

aij
(s− λi)j

,
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where aij are constant coefficients. The inverse Laplace transform of each individual term can then
be computed using the formula

L−1

󰀗
k!

(s− λ)k+1

󰀘
= tkeλt.

We note that a pole of any order n ≥ 1 at s = λ induces a time response that behaves as eλt as
time goes to infinity. Thus, if a function ŷ(s) contains many poles, its region of convergence will
be Re[s] ≥ a0, where a0 is the real part of the rightmost pole λi.

Example. The following Laplace transform

f̂(s) =
s+ 2

s(s2 + 4)
,

has first-order poles at s = 0, −2i, 2i, thus it can be expanded as

f̂(s) =
s+ 2

s(s+ 2i)(s− 2i)
=

a1
s

+
a2

s+ 2i
+

a3
s− 2i

,

where the coefficients a1, a2, and a3 can be found by taking the limits

a1 = lim
s→0

sf̂(s) = lim
s→0

s+ 2

(s+ 2i)(s− 2i)
=

1

2
,

a2 = lim
s→−2i

(s+ 2i)f̂(s) = lim
s→−2i

s+ 2

s(s− 2i)
= −1− i

4
,

a3 = lim
s→2i

(s− 2i)f̂(s) = lim
s→2i

s+ 2

s(s+ 2i)
= −1 + i

4
.

Therefore,

f̂(s) =
1

2s
− 1− i

4

1

s+ 2i
− 1 + i

4

1

s− 2i
,

and we obtain, by identification,

f(t) =
1

2
− 1− i

4
e−2it − 1 + i

4
e2it =

1

2
(1− cos 2t− sin 2t), t ≥ 0.

Example. Consider the Laplace transform

f̂(s) =
5s2 + 3s+ 1

(s+ 2)2(s+ 1)
,

with a first-order pole at s = −2 and a second-order pole at s = −2. We express the function as:

a1
s+ 2

+
a2

(s+ 2)2
+

a3
s+ 1

=
5s2 + 3s+ 1

(s+ 2)2(s+ 1)
.

Multiplying with s+1 and taking the limit s → −1, then with (s+2)2 and taking the limit s → −2
and finally with s+ 2 and taking the same limit, results in the partial fractions expansion:

f̂(s) =
a1

s+ 2
+

a2
(s+ 2)2

+
a3

s+ 1
=

2

s+ 2
− 15

(s+ 2)2
+

3

s+ 1
,

and the time domain response is

f(t) = 2e−2t − 15te−2t + 3e−t, t ≥ 0.

Notice the te−2t term arising from the second-order pole.
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4.2.2 Response to forcing

Example. Consider the system shown in Figure 4.3 and governed by the following equation

m
d2y

dt2
+ ky = f(t), y(0) = ẏ(0) = 0, f(t) = δ(t).

Taking the Laplace transform on both sides, we obtain

ms2ŷ(s) + kŷ(s) = 1,

or equivalently,

ŷ(s) =
1

ms2 + k
=

1/m

(s+ i
󰁳
k/m)(s− i

󰁳
k/m)

.

By applying partial fractions and considering the inverse Laplace transform we have

y(t) =
1√
km

sin

󰁵
k

m
t, t ≥ 0

k
m

y(t)

f(t)

Figure 4.3 – Spring-mass system.

The above example shows that the Laplace transform is useful in calculating the response of
stable or unstable systems with given initial conditions to external excitation. Another area of
application of the Laplace transform is in determining the nature of the response of a system under
stochastic excitation with given spectrum. Recall that the response of an LTI system with input
u(t) and transfer function h(t) can be written as the convolution

y(t) = h(t) ∗ u(t),

for zero initial conditions (we will explore the effect of the latter in the next section). Taking the
Laplace transform, we have

ŷ(s) = ĥ(s)û(s),

which shows that ŷ(s) will inherit the poles contained in both ĥ(s) and û(s). This has important
consequences for the behavior of y(t), as we illustrate in the example below.

Example. Let the system

m
d2y

dt2
+ ky = f(t, ζ), y(0) = ẏ(0) = 0,
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Figure 4.4 – Spectrum of forcing.

where f(t, ζ) is a Gaussian, stationary and ergodic stochastic process with one-sided spectrum
shown in Figure 4.4. As time tends to infinity, will the response y(t, ζ) tend to a stationary and
ergodic random process?

First, we take the Laplace transform of the governing equation and we get

ŷ(s, ζ) =
f̂(s, ζ)

ms2 + k
= ĥ(s)f̂(s, ζ),

which shows that ĥ(s) has first-order poles at s = ±i
󰁳
k/m. We then recall the decomposition

f(t, ζ) =
󰁛

n

an cos(ωnt+ θn(ζ)) =
󰁛

n

an
ei(ωnt+θn) + e−i(ωnt+θn)

2
,

where an are deterministic amplitudes, ωn are deterministic frequencies, θn ∼ U(0, 2π) are iid
random phases, and ∆ = ωn+1 − ωn → 0 in the continuous spectrum limit. By linearity of the
Laplace transform,

f̂(s, ζ) =
1

2

󰁛

n

ane
iθnL[eiωnt] + c.c. =

1

2

󰁛

n

an
eiθn

s− iωn
+ c.c.,

where c.c. denotes complex conjugate. Thus, f̂(s, ζ) has first-order poles on the imaginary axis at
s = ±iωn, n = 1, 2, . . . with ωmin ≤ ωn ≤ ωmax. The Laplace transform of the response is

ŷ(s, ζ) =
1/m

(s+ i
󰁳
k/m)(s− i

󰁳
k/m)

f̂(s, ζ)

=
1

2m

󰁛

n

an
eiθn

(s− iωn)(s+ i
󰁳
k/m)(s− i

󰁳
k/m)

+ c.c.

As illustrated in Figure 4.5, two cases are now possible:

1. If
󰁳
k/m < ωmin or

󰁳
k/m > ωmax, as shown in Figure 4.5(a), then ŷ(s) will only contain a

continuous distribution of first-order poles situated at s = ±iωn, n = 1, 2, . . . and a pair of
poles at s = ±i

󰁳
k/m. Since

L−1

󰀗
eiθn

s± iωn

󰀘
= e±i(ωnt+θn),

the response y(t, ζ) will be composed of sinusoidal frequency components with iid random
phases, hence it will be stationary and ergodic and we can use the Wiener-Khinchine relations
to characterize its spectrum.
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2. If ωmin ≤
󰁳
k/m ≤ ωmax, in which case ωn =

󰁳
k/m for some n as shown in Figure 4.5(b),

then ŷ(s) will contain a pair of second-order poles at s = ±i
󰁳
k/m. Since

L−1

󰀥
eiθn

(s± i
󰁳
k/m)2

󰀦
= te±i(

√
k/m t+θn),

the response y(t, ζ) will grow algebraically with time! It is thus not stationary and we cannot
use the Wiener-Khinchine relations since it does not have a spectrum.

Re[s]

Im[s]

Re[s]

Im[s](a) (b)

i!max

�i!max

�i!min

i!min

i
p

k/m

�i
p
k/m

i!max

�i!max

�i!min

i!min

i
p

k/m

�i
p
k/m

Figure 4.5 – Interplay between poles of the system and poles of the forcing.

4.3 Finite-dimensional LTI systems

Consider the finite-dimensional LTI system, written in state-space form,

ẋ = Ax+Bu,

y = Cx,

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rl is the output, and the matrices A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rl×n. Note that the state variables are not unique. Indeed, we can always choose
a non-singular matrix M ∈ Rn×n such that

x = Mz ⇔ z = M−1x,

where z is the state in the new coordinate system. In the new coordinates z, the dynamics become

ż = (M−1AM)z+ (M−1B)u,

y = (CM)z,

Example. Let x = (x1, . . . , xn) describe a scalar field in a turbulent flow, discretized on a grid
with n points. Applying a Fourier transform, we have

x =

n󰁛

i=1

αix̃i,
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where αi are Fourier coefficients, and x̃i are Fourier modes. The vector of Fourier coefficients
α = (α1, . . . ,αn) then represents the state in a new coordinate system (the Fourier basis).

Example. Consider the driven pendulum shown in Figure (4.6). The governing equations are

l
d2φ

dt2
+

d2u0
dt2

cosφ+mg sinφ = 0,

y = l sinφ,

where u0 is the prescribed input, and y is the observed output. Assuming that φ, φ̇ are small, we
can linearize by approximating cosφ ≃ 1, sinφ ≃ φ and retaining only first-order terms, leading to

l
d2φ

dt2
+mgφ = −d2u0

dt2
= u(t),

y = lφ.

Defining the state as φ = (φ, φ̇)T, we can then write the above equations in state space form,

φ̇ =

󰀗
0 1

−mg/l 0

󰀘
φ+

󰀗
0
1/l

󰀘
u(t),

y =
󰀅
l 0

󰀆
φ.

y

u0(t)

l

�

g

m

Figure 4.6 – Driven pendulum.

Example. Consider the taut string under tension T0 depicted in Figure 4.7, driven from the top
with motion y(0, t) = u0(t), and fixed at the bottom. The governing equations are

m
∂2y

dt2
=

󰀥
T0 + EA

󰀕
∂y

∂x

󰀖2
󰀦
∂2y

∂x2
,

where E is the Young’s modulus, A is the cross-sectional area. The boundary conditions are
y(0, t) = u0(t), y(l, t) = 0 where l is the length of the string. If y and ∂y/∂x are small, we have

EA

󰀕
∂y

∂x

󰀖2

≪ T0,

and we can linearize the governing equation to get

m
∂2y

dt2
= T0

∂2y

∂x2
.
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y(x, t)

T0

u0(t)

x

Figure 4.7 – Taut string.

To make the problem finite-dimensional, we apply the governing equation at discrete points xk,
with motion y(xk, t) discretized as

yk(t) = y(xk, t), k = 1, . . . , N.

Using a second-order finite difference approximation for the spatial derivative, the discretized gov-
erning equation becomes

mÿk = T0
yk+1 − 2yk + yk−1

h2
,

where h = xk+1 − xk. With N = 3 points, as shown in Figure 4.8, and applying the boundary
conditions, we get

mÿ1 =
T0

h2
(y2 − 2y1 + u0),

mÿ2 =
T0

h2
(y3 − 2y2 + y1),

mÿ3 =
T0

h2
(0− 2y3 + y2).

Thus, defining the state x = (y1, y2, y3, ẏ1, ẏ2, ẏ3)
T and δ = T/h2m, the state-space equations are

ẋ =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−2δ δ 0 0 0 0
δ −2δ δ 0 0 0
δ δ −2δ 0 0 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
x+

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0
0
0
δ
0
0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
u0.
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x1

x2

x3

u0

z1

z2

z3

fixed

Figure 4.8 – Taut string discretization.

4.3.1 Response to forcing

The Laplace transform is useful in determining the response of stable and unstable systems to
forcing. Consider the system

ẋ = Ax+Bu,

y = Cx,

with initial conditions x(0) = x0. Taking the Laplace transform of the above governing equations,

sx̂(s)− x(0) = Ax̂(s) +Bû(s)

ŷ(s) = Cx̂(s),

hence, combining the two equations we get

ŷ(s) = C[sI−A]−1x0󰁿 󰁾󰁽 󰂀
effect of IC

+C[sI−A]−1Bû(s)󰁿 󰁾󰁽 󰂀
effect of forcing

.

The transfer function HL(s) (in the Laplace sense) is defined as

HL(s) = C[sI−A]−1B.

To find the response y(t) in the time domain, we will decompose ŷ(s) into contributions from
different modes with different frequencies, in the same spirit as the partial fractions expansion
seen previously. Consider that A is a real n × n matrix with n distinct eigenvalues λi. The right
eigenvectors vi of A are defined as

Avi = λivi, i = 1, . . . , n,

and the left eigenvectors wi of A are defined as

ATwi = λiwi, i = 1, . . . , n,

where AT is the transpose of A, and possesses the same eigenvalues λi. Note that the name ‘left’
eigenvectors stems from the fact that the above equation is equivalent to

wT
i A = λiw

T
i , i = 1, . . . , n.
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It is straightforward to show that the right and left eigenvectors verify the biorthogonal property

wT
i vj =

󰀫
1 i = j,

0 i ∕= j.

Thus, if we define V = [v1 . . .vn], W = [w1 . . .wn], Λ = diag(λ1, . . . ,λn), we have the relation

WTV = VWT = I,

which implies the spectral decomposition of the matrix A,

AV = VΛ ⇒ A = VΛWT =

n󰁛

i=1

λiviw
T
i .

Similarly, we have the spectral decompositions

sI−A = sVWT −VΛWT = V(sI−Λ)WT =

n󰁛

i=1

viw
T
i (s− λi),

(sI−A)−1 = (WT)−1(sI−Λ)−1V−1 = V(sI−Λ)−1WT =

n󰁛

i=1

viw
T
i

1

s− λi
.

Inserting the above decomposition into the expression for ŷ(s), we obtain

ŷ(s) =

n󰁛

i=1

(Cvi)
1

s− λi
(wT

i x0)

󰁿 󰁾󰁽 󰂀
effect of IC

+

n󰁛

i=1

(Cvi)
1

s− λi
(wT

i B)û(s)

󰁿 󰁾󰁽 󰂀
effect of forcing

.

The response in the time domain can now be found by identifying the inverse Laplace transform of
individual terms,

y(t) =

n󰁛

i=1

(Cvi)e
λit(wT

i x0) +

n󰁛

i=1

(Cvi)(w
T
i B)

󰁝 t

0
eλi(t−τ)u(τ)dτ, t ≥ 0,

where the last integral comes from the fact that

L−1

󰀗
1

s− λi
û(s)

󰀘
= eλit ∗ u(t) =

󰁝 t

0
eλi(t−τ)u(τ)dτ.

4.3.2 Wiener-Khinchine relations

Consider the system written in state-space form,

ẋ = Ax+Bu(t, ζ),

y = Cx,

with zero initial conditions, and u(t, ζ) is a stationary and ergodic zero-mean random process with
autocorrelation function

Ruu(τ) = E[u(t)uT(t+ τ)] ⇔ {Ruu}ij(τ) = E[ui(t)uj(t+ τ)],
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and spectrum

Suu(ω) =

󰁝 ∞

−∞
Ruu(τ)e

−iωτdτ ⇔ {Suu}ij(ω) =
󰁝 ∞

−∞
{Ruu}ij(τ)e−iωτdτ.

We have seen that the transfer function (in the Laplace sense) of the system is given by

HL(s) = C[sI−A]−1B.

If the system is stable (that is, the poles of HL(s) are in the left-half complex plane, or equivalently,
the eigenvalues λi of A have negative real part), then a Fourier transform of the governing equations
leads to the transfer function HF (ω) (in the Fourier sense),

HF (ω) = C[iωI−A]−1B,

which is the finite-dimensional generalization of the transfer function we have seen previously in
Section 2.5.6. Note that the two definitions of the transfer function (in the Fourier or Laplace
sense) are related as HF (ω) = HL(iω).

Thus, if the system is stable, we have the finite-dimensional generalization of the Wiener-
Khinchine theorem,

Syy(ω) = HF (ω)Suu(ω)H
H
F (ω),

where HH
F = (H∗)T denotes the transpose of the complex conjugate of H. As illustrated in Figure

4.9, the Laplace transform can be applied to the initial transient regime, while the spectrum of
the response in the subsequent statistical steady-state is described by the above Wiener-Khinchine
theorem.

Figure 4.9 – Initial transient regime and subsequent statistical steady-state.

Example. Consider the double spring-damper-mass system pictured in Figure 4.10, and governed
by the following equations

m1ẍ1 − c1ẋ2 − k1x2 = F1,

m2ẍ1 +m2ẍ2 + c2ẋ1 + (c1 + c2)ẋ2 + k2x1 + (k1 + k2)x2 = F2,

where F1 and F2 are stationary, ergodic, zero-mean and Gaussian stochastic processes. First, we
find the transfer function matrix between the input F = (F1, F2)

T and the output y = (x1, x2)
T

by assuming that F1 and F2 are deterministic functions with well-defined Fourier transforms, and
taking the Fourier transform of the governing equations

󰀗
−ω2m1 −iωc1 − k1

−ω2m2 + iωc2 + k2 −ω2m2 + iω(c1 + c2) + (k1 + k2)

󰀘 󰀗
x̃1
x̃2

󰀘
=

󰀗
F̃1

F̃2

󰀘
.
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m2
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k1

k2
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F1

F2

Figure 4.10 – Double spring-damper-mass system.

This can be expressed as 󰀗
x̃1
x̃2

󰀘
= HF (ω)

󰀗
F̃1

F̃2

󰀘
,

where the transfer function HF (ω) is given by

HF (ω) =
1

∆(ω)

󰀗
∆11(ω) ∆12(ω)
∆21(ω) ∆22(ω)

󰀘
,

with

∆(ω) = ω4m1m2 − iω3((m1 +m2)c1 +m1c2)

− ω2((m1 +m2)k1 +m1k2 + c1c2) + iωc2k1 + k1k2,

∆11(ω) = −ω2m2 + iω(c1 + c2) + k1 + k2,

∆22(ω) = −ω2m1,

∆12(ω) = ω2m2 − iωc2 − k2,

∆21(ω) = iωc1 + k1.

Now, given that F1 and F2 are stochastic processes with spectrum

SFF(ω) =

󰀗
SF1F1(ω) 0

0 SF2F2(ω)

󰀘
,

and applying the Wiener-Khinchine relations, we obtain the spectrum of the output

SFF(ω) =

󰀗
Sx1x1(ω) Sx1x2(ω)
Sx2x1(ω) Sx2x2(ω)

󰀘
= HF (ω)SFF(ω)H

H
F (ω).
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Chapter 5

Nonlinear Systems

5.1 Deterministic analysis

5.1.1 Linearization

Consider the case of a general 2 degrees-of-freedom (DOF) first-order system,

ẋ = f(x, y),

ẏ = g(x, y).

Example. Suppose we have a nonlinear oscillator governed by

ẍ+ h(x, ẋ) = 0.

Setting y = ẋ, we obtain the 2DOF first-order system

ẋ = y,

ẏ = −h(x, y).

Going back to the general case, we start by looking for fixed points x∗, y∗ of the system. Such
fixed points are defined by

f(x∗, y∗) = 0 ⇒ ẋ|x∗,y∗ = 0,

g(x∗, y∗) = 0 ⇒ ẏ|x∗,y∗ = 0,

that is, the system stays at the fixed point. Assuming that we find such pair(s) x∗, y∗, we can
apply the transformation

u = x− x∗ ⇒ x = u+ x∗, ẋ = u̇,

v = y − y∗ ⇒ y = v + y∗, ẏ = v̇.

Thus, u and v are variables that measure the distance of the system from the fixed point. Assuming
that |u|, |v| ≪ 1, we can Taylor expand the dynamics

u̇ = f(x∗ + u, y∗ + v) = f(x∗, y∗) +
∂f

∂x

󰀏󰀏󰀏󰀏
x∗,y∗

u+
∂f

∂y

󰀏󰀏󰀏󰀏
x∗,y∗

v +O(|u|2, |v|2),

v̇ = g(x∗ + u, y∗ + v) = g(x∗, y∗) +
∂g

∂x

󰀏󰀏󰀏󰀏
x∗,y∗

u+
∂g

∂y

󰀏󰀏󰀏󰀏
x∗,y∗

v +O(|u|2, |v|2).
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Since, by definition, f(x∗, y∗) = g(x∗, y∗) = 0, and neglecting the quadratic term, we obtain a
linearized system governing the dynamics close to the fixed point x∗, y∗

u̇ ≃ ∂f

∂x

󰀏󰀏󰀏󰀏
x∗,y∗

u+
∂f

∂y

󰀏󰀏󰀏󰀏
x∗,y∗

v,

v̇ ≃ ∂g

∂x

󰀏󰀏󰀏󰀏
x∗,y∗

u+
∂g

∂y

󰀏󰀏󰀏󰀏
x∗,y∗

v.

5.1.2 Classification of linear systems

Let us first consider a few example of 2DOF linear systems, which can in general be written as

󰀗
ẋ
ẏ

󰀘
=

󰀗
a b
c d

󰀘 󰀗
x
y

󰀘
.

Example. Consider the linear oscillator

mẍ+ kx = 0,

y = ẋ,

which is equivalent with the first-order system

󰀗
ẋ
ẏ

󰀘
=

󰀗
0 1

−k/m 0

󰀘 󰀗
x
y

󰀘
.

The solution is readily obtained as

x = A cos(ωt+ φ) ⇒ x2 = A2 cos2(ωt+ φ),

y = ẋ = −Aω sin(ωt+ φ) ⇒ y2 = A2ω2 sin2(ωt+ φ),

hence, trajectories in the phase space (x, y) describe an ellipse,

x2 +
y2

ω2
= A2,

as illustrated Figure 5.1.

x

y

fixed point

Figure 5.1 – Phase-space trajectories of the linear oscillator.
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Example. Consider the diagonal system

󰀗
ẋ
ẏ

󰀘
=

󰀗
a 0
0 −1

󰀘 󰀗
x
y

󰀘
,

which admits as solutions

x = Aeat,

y = Be−t.

The trajectories in the phase space (x, y) of the system depend on the value of a, and the different
possible cases are illustrated in Figure 5.2.

a > 0 a < �1

a = �1 �1 < a < 0

Figure 5.2 – Phase-space trajectories of a diagonal system.

In the general case 󰀗
ẋ
ẏ

󰀘
=

󰀗
a b
c d

󰀘 󰀗
x
y

󰀘
,

note that x, y = 0 is always a fixed point. Since the system is linear, we seek solutions of the form

󰀗
x
y

󰀘
=

󰀗
v1
v2

󰀘
eλt ⇒

󰀗
v1
v2

󰀘
λeλt =

󰀗
a b
c d

󰀘 󰀗
v1
v2

󰀘
eλt,

which leads to an eigenvalue problem Av = λv, where

A =

󰀗
a b
c d

󰀘
, and v =

󰀗
v1
v2

󰀘
.
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We thus want to find nontrivial solutions to (A−λI)v = 0, that is, solutions such that v ∕= 0. This
requires A− λI to be non-invertible. We thus impose the condition det(A− λI) = 0, that is,

det

󰀗
a− λ b
c d− λ

󰀘
= 0 ⇒ λ2 − τλ+∆ = 0 ⇒ λ1,2 =

τ ±
√
τ2 − 4∆

2
,

where τ = a+ d and ∆ = ad− bc. The solution can thus be written as the superposition

󰀗
x
y

󰀘
= α1v1e

λ1t + α2v2e
λ2t,

where v1,2 are the eigenvectors associated with the eigenvalues λ1,2, obtained by solving the linear
system (A − λ1,2I)v1,2 = 0 once the eigenvalues are found, and α1,2 are constants that are found
from the initial conditions.

Example. Consider the system

ẋ = x+ y,

ẏ = 4x− 2y.

Following the procedure outlined above, we find the eigenvalues

λ2 + λ− 6 = 0 ⇒ λ1 = 2, λ2 = −3,

and the associated eigenvectors

v1 =

󰀗
1
1

󰀘
, v2 =

󰀗
1
−4

󰀘
.

In Figure 5.3(a), we sketch the behavior of the system in the state-space (x, y), which can be inferred
from the eigenvalues and eigenvectors. The positive eigenvalue λ1 indicates repulsion away from
the fixed point along the eigendirection v1, while the negative eigenvalue λ2 indicates attraction
to the fixed point along the eigendirection v2. Should the eigenvalues be both negative, we would
obtain the behavior sketched in Figure 5.3(b).

�1 > 0,�2 < 0 �1 < 0,�2 < 0

(a) (b)

Figure 5.3 – Phase-space trajectories of a system with (a) real eigenvalues of opposite sign, and
(b) negative real eigenvalues.
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Going back to the general case, recall that the eigenvalues are given by

λ1,2 =
τ ±

√
τ2 − 4∆

2
,

where τ = a+ d and ∆ = ad− bc. Depending on the signs of τ and ∆, we can distinguish different
possible scenario which are illustrated in Figure 5.4:

1. If ∆ < 0, then

λ1,2 =
τ

2
± 1

2

󰁳
τ2 − 4∆ with λ1 > 0,λ2 < 0,

hence the fixed point is an unstable saddle.

2. If ∆ > 0, we further need to distinguish between three cases:

(a) if τ2 − 4∆ = 0, then

λ1,2 =
τ

2
,

hence the fixed point is an unstable node for τ > 0, and a stable node for τ < 0.

(b) if τ2 − 4∆ > 0, then

λ1,2 =
τ

2
± 1

2

󰁳
τ2 − 4∆ with sign(λ1,2) = sign(τ),

hence the fixed point is an unstable node for τ > 0, and a stable node for τ < 0.

(c) if τ2 − 4∆ < 0, then

λ1,2 =
τ

2
± 1

2
i
󰁳
|τ2 − 4∆|,

hence the fixed point is an unstable spiral for τ > 0, and a stable spiral for τ < 0.

⌧2 � 4� = 0

�

⌧

unstable
saddle

stable
node

unstable
node

unstable
spiral

stable
spiral

Figure 5.4 – Stability landscape for 2D linearized systems.
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Example. Consider the system

ẋ = −x+ x3,

ẏ = −2y.

We first look for fixed points

−x∗ + x∗3 = 0 ⇒ x∗ = 0,±1,

−2y∗ = 0 ⇒ y∗ = 0.

Thus we have the fixed points (x∗, y∗) = (0, 0), (x∗, y∗) = (1, 0), (x∗, y∗) = (−1, 0). Linearizing
the system around the fixed point (x∗, y∗) = (0, 0) leads to the matrix

A =

󰀗
−1 0
0 −2

󰀘
,

thus this fixed point is stable. Linearizing the system around the fixed points (x∗, y∗) = (±1, 0)
leads to the matrix

A =

󰀗
2 0
0 −2

󰀘
,

thus these fixed points are unstable saddles. Since we cannot have chaotic dynamics between the
fixed points for a 2D system, the knowledge of these 3 fixed points and their stability behavior
enables us to draw in Figure 5.5 the behavior of the system in phase space.

Figure 5.5 – Phase portrait of system with 3 fixed points.

5.2 Nonlinear systems with white noise excitation

5.2.1 The Fokker-Planck-Kolmogorov (FPK) equation

Consider the nonlinear system

dY

dt
= F[Y, t] + σ[Y, t]Ẇ, Y(t0) = Y0,

where Y(t, ζ) ∈ RN is the state, F ∈ RN is a nonlinear ‘drift’ term, σ ∈ RN×N is a nonlinear
‘diffusion’ term, and Ẇ ∈ RN is white noise. For nonlinear systems, the statistics are non-Gaussian
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and hence 2nd-order moments are not sufficient to give a full description of the response. We thus
have to use the Fokker-Planck-Kolmogorov (FPK) equation, which transforms the trajectory-based
description of the dynamics into an evolution equation for the pdf fY of the state. It is formulated
as follows

∂fY
∂t

+
N󰁛

i=1

∂

∂yi
[Fi(y, t)fY]− 1

2

N󰁛

i,j=1

∂2

∂yi∂yj
[bij(y, t)fY] = 0,

where fY(y, t) = fY(y1, y2, . . . , yN , t) is the pdf of the stochastic process Y(t, ζ) describing the
state, and the diffusion coefficients bij are defined as

bij(y, t) =

N󰁛

r=1

σir(y, t)σjr(y, t), i, j = 1, . . . , N.

The Fokker-Planck-Kolmogorov equation represents the conservation of probability in phase space.
It is a linear partial differential equation (PDE); more specifically, if the system is described by an
N -dimensional nonlinear ODE, then the FPK is a linear PDE defined in an N -dimensional domain.
The FPK equation is hard to solve (numerically) for N > 4, since it must always integrate to one
and be non-negative. Finally, it is valid for white noise only (similar equations exist for Poisson
noise and Levy noise).

5.2.2 Application examples

Example. Consider the 1D nonlinear system

dY

dt
+ h(Y ) = DẆ , Y (0) = Y0,

where the state Y ∈ R, D is a constant, h(Y ) is a nonlinear function and the initial condition Y0
is deterministic. The associated FPK is expressed as

∂fY (y, t)

∂t
=

∂

∂y
[h(y)fY (y, t)] +

1

2
D2∂

2fY (y, t)

∂y2
,

with the initial and boundary conditions

fY (y, 0) = δ(y − y0), lim
|y|→∞

fY (y, t) = 0.

When solving the FPK numerically, we need to ensure that fY ≥ 0 everywhere, and that

󰁝 ∞

−∞
fY (y, t)dy = 1.

As t → ∞, the long-time solution converges to the statistical steady-state

lim
t→∞

fY (y, t) = fY,s(y).

To find fY,s(y), we set the time derivative to zero in the FPK,

∂

∂y
[h(y)fY,s(y)] +

1

2
D2∂

2fY,s(y)

∂y2
= 0.
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Making use of the fact that fY,s(y) must vanish as |y| → ∞, we can integrate the above equation

h(y)fY,s(y) +
1

2
D2∂fY,s

∂y
= 0.

Thus, we get the long-time statistics by integrating one more time

fY,s(y) =
1

C
exp

󰀗
− 2

D2

󰁝 y

0
h(z)dz

󰀘
,

where C is a normalizing constant such that

󰁝 ∞

−∞
fY,s(y)dy = 1 ⇒ C =

󰁝 ∞

−∞
exp

󰀗
− 2

D2

󰁝 y

0
h(z)dz

󰀘
dy.

Example. Consider the nonlinear oscillator,

d2Y

dt2
+ β

dY

dt
+ h(Y ) = 2DẆ ,

where h(Y ) is a nonlinear restoring force. Since the FPK is formulated for 1st-order equations, we
set Y = Y1, Ẏ = Y2 and we rewrite the above 2nd-order equation as a set of coupled 1st-order
equations (similar to a nonlinear state-space description)

dY1
dt

= Y2,

dY2
dt

= −βY2 − h(Y1) + 2DẆ .

The FPK for the pdf fY1Y2(y1, y2, t) is then expressed as

∂fY1Y2(y1, y2, t)

∂t
= − ∂

∂y1
[y2fY1Y2(y1, y2, t)] +

∂

∂y2
[(βy2 + h(y1))fY1Y2(y1, y2, t)]

+ 2D2∂
2fY1Y2(y1, y2, t)

∂y22
.

In the long-time limit, the solution converges to the statistical steady-state

lim
t→∞

fY1Y2(y1, y2, t) = fY1Y2,s(y1, y2),

which is described by the steady-state FPK equation

0 = − ∂

∂y1
[y2fY1Y2,s(y1, y2)] +

∂

∂y2
[(βy2 + h(y1))fY1Y2,s(y1, y2)] + 2D2∂

2fY1Y2,s(y1, y2)

∂y22
.

Integrating the above equation, we obtain the Maxwell Boltzmann distribution,

fY1Y2,s(y1, y2) = C exp

󰀗
− β

2D2

󰀕
y22
2

+

󰁝 y1

0
h(z)dz

󰀖󰀘
= C exp

󰀗
− β

2D2
E(y1, y2)

󰀘
,

where E represents the total energy of the system, that is, the sum of the kinetic energy and the
potential energy

E(Y, Ẏ ) =
1

2
Ẏ 2 +

󰁝 Y

0
h(z)dz.
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Note that if the system is linear, that is, h(Y ) = kY , then fY1Y2,s is Gaussian as expected. Consider
instead the case h(Y ) = αY + kY 3, which corresponds to the Duffing oscillator,

d2Y

dt2
+ β

dY

dt
+ αY + kY 3 = 2DẆ ,

with total energy given by

E(Y, Ẏ ) =
1

2
Ẏ 2 +

1

2
αY 2 +

1

4
kY 4.

In the long-time limit, the steady-state pdf is then

fY1Y2,s(y1, y2) = C exp

󰀗
− β

2D2

󰀕
y22
2

+
1

2
αy21 +

1

4
ky41

󰀖󰀘
.

We now investigate the relationship between the steady-state pdf obtained above and the stability
properties of the system without taking the noise into account. Let us first focus on the case
α, k > 0. As done in the previous section, we first look for fixed points satisfying Ẏ1 = Ẏ2 = 0,
which implies

αY ∗
1 + kY ∗

1
3 = 0 and Y ∗

2 = 0 ⇒ Y ∗
1 = Y ∗

2 = 0.

To find the stability properties of the system in the neighborhood of the fixed point Y ∗
1 = Y ∗

2 = 0,
we linearize the governing equations around Y ∗

1 , Y
∗
2 , which leads to

󰀗
Ẏ1
Ẏ2

󰀘
=

󰀗
0 1
−α −β

󰀘 󰀗
Y1
Y2

󰀘
= A

󰀗
Y1
Y2

󰀘
.

We have trA = −β < 0 and detA = α > 0, hence as we saw in the previous section, the fixed point
Y ∗
1 , Y

∗
2 is stable and attracts neighboring trajectories. Therefore, as illustrated in Figure 5.6, the

shape of the steady-state pdf of the system with noise present is a result of the interplay between
attraction to the fixed point and diffusion due to the noise.

Figure 5.6 – Steady-state pdf of a system with a single stable fixed point.

Let us now investigate the case α < 0, k > 0. The fixed points satisfy Ẏ1 = Ẏ2 = 0, which
implies

αY ∗
1 + kY ∗

1
3 = 0 and Y ∗

2 = 0 ⇒ Y ∗
1 = 0 or ±

󰁵
−α

k
, Y ∗

2 = 0.

As before, the linearized governing equations around the fixed point Y ∗
1 = Y ∗

2 = 0 are

󰀗
Ẏ1
Ẏ2

󰀘
=

󰀗
0 1
−α −β

󰀘 󰀗
Y1
Y2

󰀘
= A

󰀗
Y1
Y2

󰀘
.
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We have trA = −β < 0 and detA = α < 0, hence the fixed point Y ∗
1 = Y ∗

2 = 0 is an unstable
saddle. Now, the linearized governing equations around the fixed points Y ∗

1 = ±
󰁳
−α/k, Y ∗

2 = 0
are 󰀗

Ẏ1
Ẏ2

󰀘
=

󰀗
0 1
2α −β

󰀘 󰀗
Y1
Y2

󰀘
= A

󰀗
Y1
Y2

󰀘
.

We have trA = −β < 0 and detA = −2α > 0, hence the fixed points Y ∗
1 = ±

󰁳
−α/k, Y ∗

2 = 0 are
stable. Thus, as illustrated in Figure 5.7, the shape of the steady-state pdf of the system with noise
present is a result of the interplay between attraction to the stable fixed points at Y ∗

1 = ±
󰁳
−α/k,

attraction and repulsion away from the unstable saddle at Y ∗
1 = 0, and diffusion due to the noise.

Figure 5.7 – Steady-state pdf of a system with two stable fixed points and an unstable saddle.

One can also look for the most probable state (Y1, Y2), which is found by setting

∇fY1Y2,s = 0 ⇒ ∂fY1Y2,s

∂y1
= 0 and

∂fY1Y2,s

∂y2
= 0

⇒ αy1 + ky31 = 0 and y2 = 0,

which coincides with the fixed points of the system. Evaluating the pdf at these local extrema then
allows us to find the global maximum, which in this case will be located at the two stable fixed
points Y ∗

1 = ±
󰁳
−α/k, Y ∗

2 = 0.

Example. Consider the nonlinear oscillator,

d2Y

dt2
+ β

dY

dt
+ h(Y ) = σẆ ,

where h(Y ) is a nonlinear restoring force given by

h(Y ) =

󰀻
󰁁󰀿

󰁁󰀽

−ky − 2ky0, y ≤ −y0,

ky, −y0 < y ≤ y0,

−ky + 2ky0, y > y0.

The restoring force h(Y ) is illustrated in Figure 5.8, and models the restoring force for a ship
undergoing rolling motion due to waves.

First, we find the equilibrium points of the system by setting Ẏ = Ÿ = 0 and neglecting the
noise. This leads to

h(Y ∗) = 0 ⇒ Y ∗ = 0 or Y ∗ = ±2y0.
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h(Y )

Yy0

�y0
k �k

Figure 5.8 – Restoring force for the rolling motion of a ship.

� > 0 � = 0

Figure 5.9 – Phase portrait for rolling motion of a ship.

Linearizing the system around each fixed point, we find that the fixed points Y ∗ = ±2y0 are
unstable saddles. On the other hand, the fixed point Y ∗ = 0 is stable if the damping β > 0, and
marginally stable if β = 0. The resulting phase portraits are illustrated in Figure 5.9 for the two
cases β > 0 and β = 0.

To find the pdf of the statistical steady-state, we note that

󰁝 y

0
h(z)dz =

󰀻
󰁁󰀿

󰁁󰀽

−1
2ky

2 − 2ky0y − ky20, y ≤ −y0,
1
2ky

2, −y0 < y ≤ y0,
1
2ky

2 − 2ky0y − ky20, y > y0.

hence we will obtain the steady-state pdf pictured in Figure 5.10. Note that the non-Gaussian
character of the pdf is directly caused by the nonlinear restoring force (softening nonlinearity),
inducing heavy tails to the pdf.

5.2.3 Extended phase space

Suppose that we are given a stochastic process Y (t, ζ) with given spectrum S̃Y Y (ω), and we would
like to determine the pdf of the system

dX

dt
= h(X) + Y.
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Figure 5.10 – Steady-state pdf for the rolling motion of a ship.

Since Y is not white noise, we cannot apply FPK directly. However, we can represent Y (t, ζ) as
the response of a linear oscillator excited by white noise,

d2Y

dt2
+ β

dY

dt
+ kY = σẆ .

Because of linearity of the oscillator, we can apply the Wiener-Khinchine relations

SY Y (ω) = |H(ω)|2SẆẆ (ω) =
1

(k − ω2)2 + β2ω2
σ2.

Thus, we can pick σ, k, β so that SY Y (ω) is as close as possible to the given spectrum S̃Y Y (ω).
The coupled system which results is then simply excited by white noise,

dX

dt
= h(X) + Y,

dY

dt
= Z,

dZ

dt
= −βZ − kY + σẆ .

We can therefore formulate the FPK for the pdf fXY Z(x, y, z, t) as follows

∂fXY Z

∂t
+

∂

∂x
[(h(x) + y)fXY Z ] +

∂

∂y
[zfXY Z ] +

∂

∂z
[(−βz − ky)fXY Z ]−

1

2
σ2∂

2fXY Z

∂z2
= 0.

5.3 Statistical linearization

We saw in the previous section that if the input spectrum is different from white noise, we need to
augment the dimension of the phase space by adding additional equations to model the input. For
instance,

Ẋ = aX + Ẇ ,

where Ẇ is white noise, which gives the spectrum

SXX(ω) =
1

a2 + ω2
.
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For more complicated input spectrum, we would need to use higher-order equations, such as

...
X +K2Ẍ +K1Ẋ +K0 = Ẇ ,

hence the dimensionality of the resulting augmented system can grow quickly, which becomes
problematic when it comes to solving the FPK. Obviously, high dimensionality of the actual system
would also make the PFK problematic. On the other hand, if the original nonlinear system is close
enough to a linear system, could we find a linear system that mimics the behavior of the nonlinear
system? Statistical linearization, which we will see in this section, tries to provide an answer. Note
that this is a different tool from the usual linearization performed with Taylor expansions. Consider
the nonlinear oscillator,

Ÿ + f(Y, Ẏ ) = X,

where f is a nonlinear function, and X is the excitation with given spectrum. We are trying to
find a linear system

Ÿ + βeẎ + keY = X,

that is close to the original one, with βe and ke arbitrary coefficients to be found. To that effect,
we define the difference

∆ = βeẎ + keY − f(Y, Ẏ ).

We then look for βe, ke such that ∆ is small. But since ∆ is stochastic, the relevant quantity to
minimize is the variance E[∆2]. Hence, we want to find βe, ke such that

E[∆2] = E[(βeẎ + keY − f(Y, Ẏ )2]

is minimum. The associated extrema conditions are

∂E[∆2]

∂βe
= 0, and

∂E[∆2]

∂ke
= 0.

Expanding

E[∆2] = E[β2
e Ẏ

2 + k2eY
2 + f(Y, Ẏ )2 + 2βekeY Ẏ − 2βef(Y, Ẏ )Ẏ − 2keY f(Y, Ẏ )],

the two extrema conditions are thus

βeE[Ẏ 2] + keE[Y Ẏ ]− E[Ẏ f(Y, Ẏ )] = 0,

keE[Y 2] + βeE[Y Ẏ ]− E[Y f(Y, Ẏ )] = 0.

This is a system of 2 equations for 2 unknowns ke and βe. We obtain

βe =
E[Y 2]E[Ẏ f(Y, Ẏ )]− E[Y Ẏ ]E[Y f(Y, Ẏ )]

E[Y 2]E[Ẏ 2]− E[Y Ẏ ]2
,

ke =
E[Ẏ 2]E[Y f(Y, Ẏ )]− E[Y Ẏ ]E[Ẏ f(Y, Ẏ )]

E[Y 2]E[Ẏ 2]− E[Y Ẏ ]2
.

The problem is that we don’t know the moments of Y and Ẏ ! We thus need to make the following
assumptions on the form of the solution to compute the above coefficients:

1. Y and Ẏ are Gaussian,
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2. Y and Ẏ are independent (remember that this was the case in the FPK examples), hence
E[Y Ẏ ] = 0,

3. X is stationary and Gaussian.

Setting E[Y Ẏ ] = 0 gives

βe =
E[Ẏ f(Y, Ẏ )]

E[Ẏ 2]
,

ke =
E[Y f(Y, Ẏ )]

E[Y 2]
.

Let us now consider a specific nonlinear term,

f(Y, Ẏ ) = 2hẎ + ω2
0Y + 󰂃Y 3.

Then, we get

βe =
E[2hẎ 2 + ω2

0Y Ẏ + 󰂃Y 3Ẏ ]

E[Ẏ 2]
=

2hE[Ẏ 2]

E[Ẏ 2]
= 2h,

ke =
E[2hY Ẏ + ω2

0Y
2 + 󰂃Y 4]

E[Y 2]
=

ω2
0E[Y 2] + 󰂃E[Y 4]

E[Y 2]
= ω2

0 + 󰂃
E[Y 4]

E[Y 2]
.

Note that it is expected that βe = 2h, since f is linear in Ẏ with coefficient 2h. We now make use
of the assumption that Y is Gaussian. For a Gaussian random variable, we indeed know that

E[Y 4] = 3E[Y 2]2,

which is a specific case of a more general property of Gaussian random variables,

E[Y p] =

󰀫
0, p odd,

σp
Y (p− 1)!!, p even,

where n!! = n(n− 2)(n− 4) . . . 2. Thus, we finally have

ke = ω2
0 + 3󰂃E[Y 2], βe = 2h,

where, even if unknown, E[Y 2] = σ2
Y is a constant as t → ∞. To find σ2

Y , we note that the above
parameters give the following linear system, which is closest to the original nonlinear one

Ÿ + βeẎ + keY = X,

with transfer function

H(ω) =
1

ke − ω2 + iωβe
⇒ |H(ω)|2 = 1

(ke − ω2)2 + ω2β2
e

.

By the Wiener-Khinchine relations,

SY Y (ω) =
SXX(ω)

(ke − ω2)2 + ω2β2
e

=
SXX(ω)

(ω2
0 + 3󰂃σ2

Y − ω2)2 + 4h2ω2
,
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hence the variance σ2
Y is equal to

σ2
Y =

1

2π

󰁝 ∞

−∞
SY Y (ω)dω =

1

2π

󰁝 ∞

−∞

SXX(ω)

(ω2
0 + 3󰂃σ2

Y − ω2)2 + 4h2ω2
dω.

This is a nonlinear equation for σ2
Y that can be solved numerically to obtain σ2

Y ! The coefficients
ke and βe of the linear system are thus entirely specified. In the special case where SXX(ω) = c0 =
const, that is X is white noise, we obtain

σ2
Y =

πc0
2h(ω2

0 + 3󰂃σ2
Y )

⇒ σ2
Y =

󰁳
ω4
0 + 6πc0󰂃/h− ω2

0

6󰂃
.

5.4 Moments equations

5.4.1 Ito’s formula

Let a stochastic process X(t, ζ) governed by

dX

dt
= a(t) + b(t)Ẇ (t),

where X(t) ∈ R, and Ẇ (t) is white noise. The differential of a function of X(t), f(t,X(t)), is
provided by Ito’s formula

df(t,X(t)) =

󰀗
∂f

∂t
dt+

∂f

∂x
adt+

∂f

∂x
bdW

󰀘
+

1

2
b2
∂2f

∂x2
dt,

where the last diffusion term is a correction due to white noise. To generalize Ito’s formula to
higher dimensions, consider the finite-dimensional system

dX

dt
= A(t) +B(t)Ẇ(t),

where X ∈ Rm, A ∈ Rm, B ∈ Rm×m, and Ẇ ∈ Rm is white noise. For a function f(t,X(t)) = Y(t),
Ito’s formula becomes

dY

dt
=

󰀵

󰀷∂f

∂t
+

m󰁛

i=1

∂f

∂xi
Ai +

m󰁛

i=1

m󰁛

j=1

∂f

∂xi
Bij

dWj

dt

󰀶

󰀸+
1

2

m󰁛

i=1

m󰁛

j=1

m󰁛

k=1

∂2f

∂xi∂xj
BikBjk.

Example. Consider the system

dX1

dt
= a1 + b1Ẇ ,

dX2

dt
= a2 + b2Ẇ .

The differential of the function f(t,X) = f(X1, X2) = X1X2 is

d(X1X2)

dt
= [X1a1 +X2a1 + b1b2] + [X1b2 +X2b1]Ẇ .

Example. Setting a(t) = 0 and b(t) = 0, we trivially get that X(t) = W (t), where W (t) is a
Wiener process. Then, the differential of a function f(X) = f(W ) of the Wiener process follows as

df(W )

dt
=

1

2

∂2f(W )

∂x2
+

∂f(W )

∂x
dW.

Letting f(W ) = Wn, n = 2, 3, . . . , we have

d(W n)

dt
= nWn−1dW +

1

2
n(n− 1)Wn−2.
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5.4.2 Moments equations and closure schemes

Let the system
dY

dt
= A(Y) +B(Y)Ẇ,

where Y and A are vectors, B is a matrix, and Ẇ is a white noise vector. We define

h(Y) = Y k1
1 (t)Y k2

2 (t) . . . Y kn
n (t),

where k1, k2, . . . , kn are positive integers. The family of moments are then given by

mk1k2...kn(t) = E[Y k1
1 Y k2

2 . . . Y kn
n ] = E[h(Y)].

Let us now focus on the following 1D system,

dY

dt
= −[Y + µY 3] + Ẇ .

In this case, h(Y ) = Y k and mk = E[Y k]. Applying Ito’s formula then taking the expectation,

dmk

dt
= −kmk − kµmk+2 +

1

2
k(k − 1)mk−2, k = 1, 2, . . .

For k = 1, this becomes
dm1

dt
= −m1 − µm3,

while for k = 2, we have
dm2

dt
= −2m2 − 2µm4 + 1.

This illustrate the closure problem: moments equations always involve higher-order moments, and
hence the system can never be closed exactly. To circumvent this issue, suitable approximations
can be made, resulting in different closure schemes:

1. The easiest option is to set higher-order moments to zero. The results are rather inaccurate,
and often lead to negative 2nd order moments. In the above example, this is equivalent with
linearizing the original system (but not true in general).

2. Gaussian closure is a more accurate option. Assuming a Gaussian pdf for the response, one
can express higher-order moments in terms of lower-order moments.

3. A third closure scheme is the cumulant neglect hypothesis. Given a pdf g, we denote the
Fourier transform

φ(λ) = F [g].

Then, the cumulants are defined as

km =
1

im
dm

dλm
lnφ(λ)

󰀏󰀏󰀏󰀏
λ=0

.

The cumulants are connected with the moments in the following way

m1 = k1,

m2 = k2 + k21,

m3 = k3 + 3k1k2 + k31,

and they measure the distance from a Gaussian distribution. Indeed, for a Gaussian distri-
bution we would have k3 = k4 = · · · = 0. We may now close the moments equations by
neglecting the cumulants.
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Chapter 6

Bayesian Regression

Suppose we have a training set D of n observations

D = {(xi, yi)}ni=1,

where x is the input vector and y is a (scalar) output. Our goal is to infer an input–output
relationship in the form y = f(x) from our dataset D. In other words, we seek the conditional
distribution of the outputs given the inputs.

6.1 The standard linear model

In the standard linear model, we assume a linear relationship between inputs and outputs:

f(x) = xTw, y = f(x) + ε,

where w is the vector of parameters and ε is a noise term that reflects the fact that our observations
may differ from the function values. We assume that the noise is Gaussian, that is,

ε ∼ N (0,σ2
n).

We first define the likelihood function as the probability density of the observations given
the parameters, which we write as

p(y|X,w) =

n󰁜

i=1

p(yi|xi,w) =

n󰁜

i=1

1√
2πσn

exp

󰀗
−(yi − xT

i w)2

2σ2
n

󰀘
= N (XTw,σ2

nI).

In deriving the above, we have made use of the independence assumption between input–output
pairs. We may also have some beliefs about the parameters before we look at the observations.
This is specified in a prior over w. For simplicity, we assume a zero-mean Gaussian prior with
covariance matrix Σp:

w ∼ N (0,Σp).

The posterior is the probability density of the parameters given the observations we have made
and the prior. Using Bayes rule, we have

p(w|X,y) =
p(y|X,w)p(w)

p(y|X)
=

likelihood× prior

marginal likelihood
,
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where the marginal likelihood is given by

p(y|X) =

󰁝
p(y|X,w)p(w) dw.

We arrive at

p(w|X,y) ∝ exp

󰀗
− 1

2σ2
n

(y −XTw)T(y −XTw)

󰀘
exp

󰀗
−1

2
wTΣ−1

p w

󰀘
= N

󰀕
A−1Xy

σ2
n

, A−1

󰀖
,

where A = σ−2
n XXT + Σ−1

p . Note the interplay between data and prior knowledge in the variance
A. Also note that for Gaussian input, the output is generally non-Gaussian.

To make prediction for x∗ not in the original dataset, we compute the predictive distribution
for y∗ at x∗:

y∗|x∗, X,y ∼ N
󰀕
xT
∗A

−1Xy

σ2
n

,xT
∗A

−1x∗

󰀖
.

The predictive distribution is Gaussian, with a mean depending linearly on x∗ and a variance
depending quadratically on x∗. This means that predictive uncertainties grow with the magnitude
of the input.

Figure 6.1 shows an example of Bayesian linear regression for a simple two dimensional problem.
Note that while input x is one dimensional we include an offset term in the regression by augmenting
each measurement with a constant so that x = (x, 1). With few observations, the variance of the
likelihood function is large, allowing the prior to have a dominant effect. As more samples are
collected the likelihood becomes sharper and the prior plays a less significant role.

6.2 Nonlinear regression (projection of inputs into feature space)

Instead of using a linear model for our input–output relationship, we may decide to projet the
inputs into some high-dimensional space and then apply the linear model in this “lifted” space. To
this end, we introduce the function φ which maps the input vector x into an N -dimensional feature
space. Our model becomes

f(x) = φ(x)Tw, y = f(x) + ε.

We may proceed as before, except that everywhere φ(x) is substituted for x. The predictive
distribution becomes

y∗|x∗, X,y ∼= N
󰀕
φ(x∗)

TA−1Φy

σ2
n

,φ(x∗)
TA−1φ(x∗)

󰀖
,

where Φ = Φ(X) is the aggregation of columns φ(x) and A = σ−2
n ΦΦT + Σ−1

p .
Nonlinear models have more expressiveness than linear models, but they become expensive to

compute as the dimension of the feature space increases. They also have a tendency to overfit the
data. That is, to identify patterns in the data which do not truly exist but are the consequence
of having a finite sample size. An example of nonlinear regression with a quintic feature map is
shown in the top row of Fig. 6.2. Since w is a six-dimensional vector we only show the prior and
posterior distributions for y.
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Figure 6.1 – Top row: Prior distributions for w and y∗|x∗ for a two dimensional linear problem.
Lower three rows: Likelihood p(D|w), w-posterior p(w|D), and y-posterior p(y∗|D,x∗) for datasets
of size 2, 10, and 50. Black crosses at w = (0.5, 0.25) indicates model used to generate data with
σ2 = 1/4.
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Figure 6.2 – Top row: Prior and posterior distributions for y∗ for datasets of size 1, 5, and 50 using
features φ(x) = (1, x, x2, x3, x4, x5). Bottom row: posterior distribution for y∗ using automatic
relevance determination. |γ|0 indicates the number of non-zero elements of γ and therefore the
number of features used in the model.

6.3 Selecting a prior

In order to apply the Bayesian regression framework we have assumed that we are given a prior in
the form of w ∼ N (0,Σp). There are two natural questions to ask;

• Why did we assume w ∼ N (0,Σp)?

• Where does Σp come from?

The answer to the first question is simple, if not entirely satisfying. We first define a conjugate prior.
We say that p(w) is a conjugate prior for likelihood p(D|w) if the posterior distribution p(w|D)
is in the same family of distributions as p(w), e.g. they are both Gaussian. Using a conjugate
prior simplifies the problem algebraically and allows us to see the difference between prior and
posterior clearly by looking at how parameters change. Gaussian distributions are self conjugate,
so we selected w ∼ N (0,Σp) because our likelihood is a Gaussian. As a consequence, we are able
to derive the posterior distribution analytically and to easily see how the likelihood acts to update
the prior.

Of course, what makes sense algebraically may be arbitrary in the context of the problem we
are considering and we are not required to pick a conjugate prior. In some cases domain knowledge
might lead us to other choices or we may have a sufficiently complex likelihood function that we
are unable to find a conjugate prior. Computation of the posterior distribution in these cases will
be much more challenging.

We now consider the second question; once we have established that it is reasonable to use a
Gaussian prior for w, how do we choose an appropriate covariance, Σp? The Bayesian approach is
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to let Σp itself be a random variable with its own prior distribution. That is,

Σp ∼ p(Σp|η)

where η is a parameter characterizing the prior distribution of Σp. This gives the joint posterior
distribution over w and Σp,

p(w,Σp|D) = p(D|w)p(w|Σp)p(Σp|η).

At this point it may seem like we have not made any progress. We no longer need to pick Σp, but
we do need to pick an appropriate prior p(Σp|η) and hyperparameter η. Furthermore, our posterior
is now higher dimensional and more complicated than before. We solve both of the problems
with a method called empirical Bayes, also known as type-II maximum likelihood or evidence
maximization. Using empirical Bayes we set,

p(Σp) = δ

󰀣
Σp − argmax

Σ̃p

p
󰀓
D|Σ̃p

󰀔󰀤
= δ

󰀣
Σp − argmax

Σ̃p

󰁝
p (D|w) p

󰀓
w|Σ̃p

󰀔
dw

󰀤

where δ is the Dirac delta distribution so that Σp = argmax
Σ̃p

p
󰀓
D|Σ̃p

󰀔
with probability one. For

the nonlinear Bayesian regression problem we considered in the previous section the evidence is
given by,

p
󰀓
D|Σ̃p

󰀔
=

󰁝
p (D|w) p

󰀓
w|Σ̃p

󰀔
dw

=
1

(2π)n/2|Σy|
1
2

exp

󰀕
−1

2
yTΣ−1

y y

󰀖
,

where,
Σy = σ2

nI + ΦΣ̃pΦ
T .

Maximizing the evidence is equivalent to minimizing the negative log of the evidence, which is often
an easier computational problem. We therefor find Σp through solving,

Σp = argmin
Σ̃p

log |Σy|+ yTΣ−1
y y.

For p(w|Σp) to be a probability density function we need Σp to be symmetric positive defi-
nite, though we may also consider symmetric positive semidefinite Σp under the restriction that
w ⊥ ker(Σp). Optimization on the space of symmetric positive (semi)definite matrices is highly
nontrivial, so we often assume a simple Anstaz for Σp. The most common are Σp = λ−1I with
λ > 0, called Bayesian ridge regression, and Σp = diag(γ) with γi ≥ 0, called automatic
relevance determination (ARD).

Automatic relevance determination is also often called sparse Bayesian learning (SBL) due to
the tendency of the empirical Bayes estimate of γ to be sparse. In this case the support of p(w)
lies on a low dimensional hyperplane and any sample from p(w) or p(w|D) will be sparse. The
second row of Fig. 6.2 shows the result of applying SBL to a simple regression problem. Compared
to Bayesian regression with Σp = λ−1I, SBL learns models with fewer nonzero terms.

6.4 MAP Estimation

In classical statistics we assume there exists some true value of w and are concerned with estimating
its value. A common technique that borrows from Bayesian methods is to assume a prior p(w) and
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estimate w as the mode of the posterior distribution,

ŵMAP = argmax
w

p(w|D) = argmax
w

p(D|w)p(w)

This is called maximum a-posteriori estimation, often abbreviated as MAP-estimation. For the
nonlinear regression problem with Σp = λ−1I the MAP-estimate ŵMAP is given in closed form by,

ŵMAP =
󰀃
ΦΦT + σ2

nλI
󰀄−1

Φy.

Taking the singular value decomposition Φ = USV T with S = diag(s) and noting that y = ΦTw+󰂃
with 󰂃 = (󰂃1, 󰂃2, . . . , 󰂃n) we can rewrite ŵMAP as,

ŵMAP =
󰀃
ΦΦT + σ2

nλI
󰀄−1

ΦΦTw +
󰀃
ΦΦT + σ2

nλI
󰀄−1

Φ󰂃

=
󰀃
U(S2 + λσ2

nI)U
T
󰀄−1

US2UTw +
󰀃
U(S2 + λσ2

nI)U
T
󰀄−1

USV T 󰂃

= Udiag

󰀕
s2

s2 + λσ2
n

󰀖
UTw + Udiag

󰀕
s

s2 + λσ2
n

󰀖
V T 󰂃

= w − Udiag

󰀕
λσ2

n

s2 + λσ2
n

󰀖
UTw

󰁿 󰁾󰁽 󰂀
bias

+Udiag

󰀕
s

s2 + λσ2
n

󰀖
V T 󰂃

󰁿 󰁾󰁽 󰂀
variance

.

We see that ŵMAP is a biased estimator of the true w in that E󰂃[ŵMAP ] ∕= w, but that as λ
becomes large the variance term decays. Setting λ > 0 will result in more accurate predictions in
many practical scenarios. Furthermore, using MAP estimation allows one to estimate w even with
fewer observations than features.

6.5 Gaussian Process Regression (GPR)

We begin out discussion of Gaussian processes by rewriting the posterior distribution y∗|x∗, X,y
for the nonlinear regression problem in terms of a symmetric function called a kernel. Recall that
for nonlinear regression the posterior is given by,

y∗|x∗, X,y ∼ N
󰀕
φ(x∗)

TA−1Φy

σ2
n

,φ(x∗)
TA−1φ(x∗)

󰀖
,

with,
A = σ−2

n ΦΦT + Σ−1
p

Define k(x,x′) = φ(x)Σpφ(x
′). Inserting

󰀃
k(X,X) + σ2

nI
󰀄 󰀃

k(X,X) + σ2
nI

󰀄−1
= I into the expres-

sion for the posterior mean gives,

1

σ2
n

φ(x∗)
TA−1Φy =

1

σ2
n

φ(x∗)
TA−1Φ

󰀃
k(X,X) + σ2

nI
󰀄 󰀃

k(X,X) + σ2
nI

󰀄−1
y

=
1

σ2
n

φ(x∗)
TA−1

󰀃
ΦΦTΣpΦ+ σ2

nΦ
󰀄 󰀃

k(X,X) + σ2
nI

󰀄−1
y

=
1

σ2
n

φ(x∗)
TA−1

󰀃
ΦΦT + σ2

nΣ
−1
p

󰀄
ΣpΦ

󰀃
k(X,X) + σ2

nI
󰀄−1

y

= φ(x∗)
TΣpΦ

󰀃
k(X,X) + σ2

nI
󰀄−1

y

= k(x∗, X)
󰀃
k(X,X) + σ2

nI
󰀄−1

y
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Applying the Woodbury identity to A−1 gives,

φ(x∗)
T
󰀓
σ−2
n ΦΦT + Σ−1

p

󰀔−1
φ(x∗) = φ(x∗)

TΣpφ(x∗)− φ(x∗)
TΣpΦ

󰀃
σ2
nI + ΦTΣpΦ

󰀄
ΦTΣpφ(x∗)

= k(x∗,x∗)− k(x∗, X)
󰀃
k(X,X) + σ2

nI
󰀄−1

k(X,x∗)

It follows that the posterior distribution for y∗ is equivalently written as,

y∗|x∗, X,y ∼ N
󰀓
k(x∗, X)

󰀃
k(X,X) + σ2

nI
󰀄−1

y, k(x∗,x∗)− k(x∗, X)
󰀃
k(X,X) + σ2

nI
󰀄−1

k(X,x∗)
󰀔
,

The kernel function here is an inner product with weights given by the prior covariance matrix Σp,
but we can define a kernel more generally. Let X be a closed subset of Rm. A kernel is a function
k : X × X → R such that k(x,x′) = k(x′,x) and for any collection {x1, . . .xn} the matrix defined
with Kij = k(xi,xj) is positive semi-definite. We can construct a wide variety of functions that
meet the definition for a kernel. It turns out that just about any kernel is equivalent to an inner
product in a Hilbert space. We present a slightly simplified version of Mercer’s theorem.

Theorem. (Mercer) If k is a kernel with
󰁕󰁕

|k(x,x′)|2µ(x)µ(x′) dxdx′ < ∞ for some µ > 0
then,

k(x,x′) =
∞󰁛

j=0

λjφj(x)φj(x
′)

where λj, φj are eigenvalue, eigenvector pairs of the operator Tk defined by,

Tkf(x) =

󰁝
k(x,x′)f(x′)µ(x′) dx′.

In other words kernels are, under mild assumptions, equivalent to inner products with infinitely
many features. This fact, together with the expression for the posterior distribution of y∗ in terms
of a kernel function motivates Gaussian processes. Rather than specifying the functional form of
the input–output relationship, we may say that f(x) is a Gaussian process with mean m(x) and
covariance given by kernel function k(x,x′) if,

E[f(x)] = m(x),

cov(f(x), f(x′)) = E[(f(x)−m(x))(f(x′)−m(x′))] = k(x,x′).

For the simple Bayesian linear regression model discussed in §6.1, we have

m(x) = xE[w] = 0,

k(x,x′) = xE[wwT]x′ = xTΣpx
′.

In Gaussian Process Regression, we only specify the covariance between data points. In some cases
the function m(x) is also specified, generally as a constant, but here we assume m(x) = 0. As an
example, we may choose

k(x,x′) = exp

󰀕
− |x− x′|2

2

󰀖
.

For this particular covariance function, the covariance is almost unity between variables whose
corresponding inputs are very close, and decreases as their distance in the input space increases.
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(a) (b)

Figure 6.3 – (a) Three random functions drawn from a GP prior, and (b) three random functions
drawn from the posterior. The shaded area corresponds to two standard deviations away from the
pointwise mean. (Reproduced from Rasmussen & Williams, 2006).

For noise-free observations (σ2
n = 0), the joint distribution of the training outputs y and the

test output y∗ according to the prior is
󰀗
y
y∗

󰀘
∼ N

󰀕
0,

󰀗
k(X,X) k(X,x∗)
k(x∗, X) k(x∗,x∗)

󰀘󰀖
.

Here, we consider only one test point, so k(X,x∗) denotes the n × 1 matrix of the covariances
between the test point and all of the training points, and similarly for the other entries k(X,X),
k(x∗,x∗) and k(x∗, X). To get the posterior distribution, we compute the conditional,

y∗|x∗, X,y ∼ N (k(x∗, X)k(X,X)−1y, k(x∗,x∗)− k(x∗, X)k(X,X)−1k(X,x∗)),

which can be thought of as a superposition of Gaussian kernels. Note that the variance is zero for
the training data. For noisy observations we have,

󰀗
y
y∗

󰀘
∼ N

󰀕
0,

󰀗
k(X,X) + σ2

nI k(X,x∗)
k(x∗, X) k(x∗,x∗)

󰀘󰀖
.

so,

y∗|x∗, X,y ∼ N (k(x∗, X)
󰀃
k(X,X) + σ2

nI
󰀄−1

y, k(x∗,x∗)− k(x∗, X)
󰀃
k(X,X) + σ2

nI
󰀄−1

k(X,x∗)).

This is precisely the form we had for the posterior in the case of nonlinear regression except that
now we have generalized our kernel to include infinite dimensional feature spaces. For illustration
of these computations, see figure 6.3.

Common choices of covariance functions include the square exponential kernel given by,

k(x,x′) = σ2
f exp

󰀕
−󰀂x− x′󰀂2

2σ2
l

󰀖
,

and the Matern class of kernels given by,

kν(x,x
′) = σ2

f

21−ν

Γ(ν)

󰀣√
2ν󰀂x− x′󰀂

σl

󰀤ν

Kν

󰀣√
2ν󰀂x− x′󰀂

σl

󰀤
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(a) (b)

(c)

Figure 6.4 – Illustration of the effect of hyperparameters on data generated from a GP. (Repro-
duced from Rasmussen & Williams, 2006).

where Kν is a modified Bessel function. ν is generally selected to be a half-integer value 3/2, 5/2, . . .
so that the kernel simplifies to,

k3/2(x,x
′) =

󰀓
1 +

√
3r
󰀔
exp

󰀓
−
√
3r
󰀔

k5/2(x,x
′) =

󰀕
1 +

√
5r +

5

3
r2
󰀖
exp

󰀓
−
√
5r
󰀔

where r = 󰀂x−x′󰀂/σl. Samples from the square exponential kernel are infinitely differentiable and
those from Matern kernel with ν = (2n+ 1)/2 are n-times differentiable.

In general, the covariance function may have free parameters, the so-called hyperparameters.
In each of the above examples the parameter σl governs the “spread” of the kernel. For small
values of σl, the covariance decays rapidly with the distance between input points; this may lead to
overfitting (figure 6.4a). On the other hand, large values of σl lead to slow decay of the covariance as
the distance between input points grows, which smoothes out asperities (figure 6.4b). The challenge
is to find a trade-off between the hyperparameters to achieve reasonable predictions (figure 6.4c).
The parameter σf is the marginal variance of the prior at a single point.

In a practical setting, we learn the coefficients in a similar manner to Empirical Bayes. From the
initial assumptions we used to define a Gaussian process, the likelihood p(D|σl,σf ) = p(y|X,σl,σf )
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Figure 6.5 – Posterior distribution for GP regression using 3 different kernels and 4 sample sizes.
The Matern 1/2 covariance function is not generally used in practice but we include it here to
highlight that small values of ν result in less smooth functions.

is given by,
p(y|X,σl,σf ) = N

󰀃
y|k(X,X) + σ2

nI
󰀄
.

To find optimal hyper-parameters we minimize the negative log-likelihood. We therefore set,

σl,σf = argmin
σl,σf

log
󰀏󰀏k(X,X) + σ2

nI
󰀏󰀏+ yT

󰀃
k(X,X) + σ2

nI
󰀄−1

y.

This is a non-convex optimization problem and in general is not solvable. Gradient decent and
quasi-Newton optimization algorithms often yield good results nonetheless. It is common practice
to search for the optimal hyperparameters using a quasi-Newton method and from several initial
conditions and select the result with lowest function value. Examples of the posterior predictive
distribution using several kernels are shown in Fig. 6.5.
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