Signal Processing on Databases

Jeremy Kepner

Lecture 0: Introduction

This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

Acknowledgements

- Nicholas Arcolano
- Michelle Beard
- Nadya Bliss
- Josh Haines
- Matthew Schmidt
- Ben Miller
- Benjamin O'Gwynn
- Tamara Yu
- Bill Arcand
- Bill Bergeron

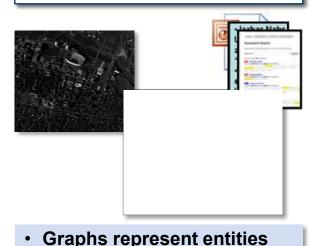
- David Bestor
- Chansup Byun
- Matt Hubbell
- Pete Michaleas
- Julie Mullen
- Andy Prout
- Albert Reuther
- Tony Rosa
- Charles Yee
- Dylan Hutchinson

Outline

- Introduction
- Course Outline
- Example Implementation
- Summary

Example Applications of Graph Analytics

ISR



and relationships detected

through multi-INT sources

1,000s – 1,000,000s tracks

GOAL: Identify anomalous

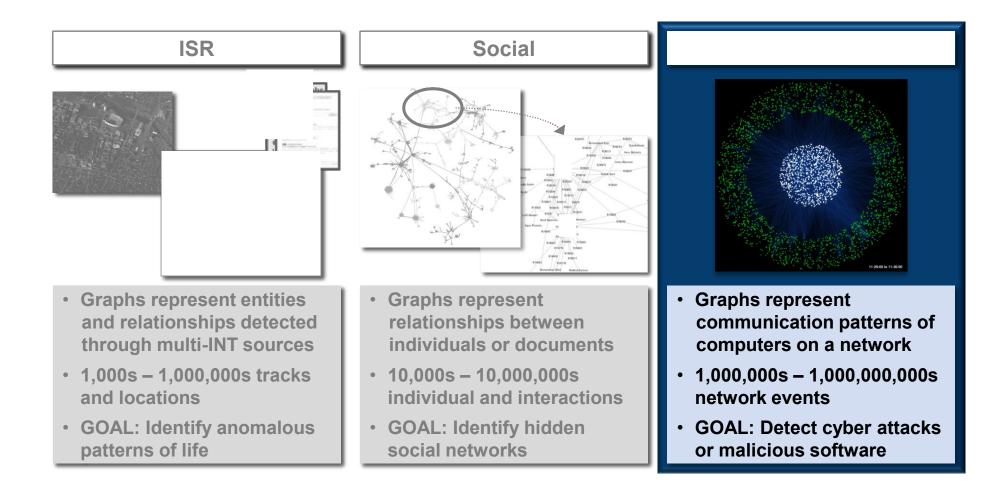
and locations

patterns of life

- Graphs represent relationships between individuals or documents
 - 10,000s 10,000,000s individual and interactions
 - GOAL: Identify hidden social networks

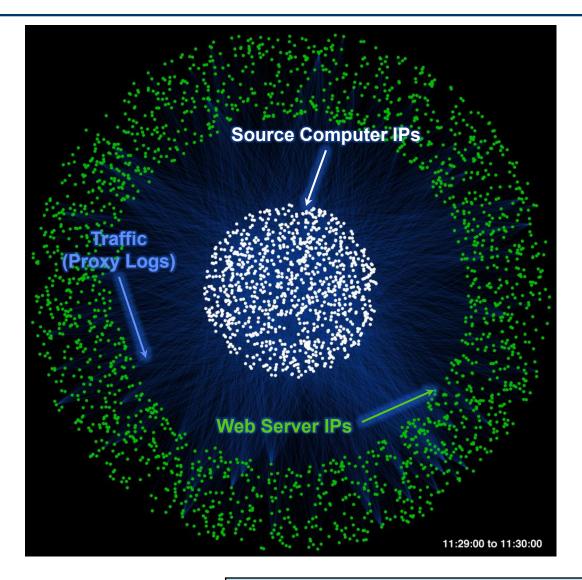
- Graphs represent communication patterns of computers on a network
- 1,000,000s 1,000,000,000s network events
- GOAL: Detect cyber attacks or malicious software
- Cross-Mission Challenge: Detection of subtle patterns in massive multi-source noisy datasets

Example Applications of Graph Analytics



 Cross-Mission Challenge: Detection of subtle patterns in massive multi-source noisy datasets

Example: Web Traffic Graph



Graph Statistics

- 90 minutes worth of traffic
- 1 frame = 1 minute of traffic
- Number of source computers: 4,063
- Number of web servers: 16,397
- Number of logs: 4,344,148

Malicious Activity Statistics

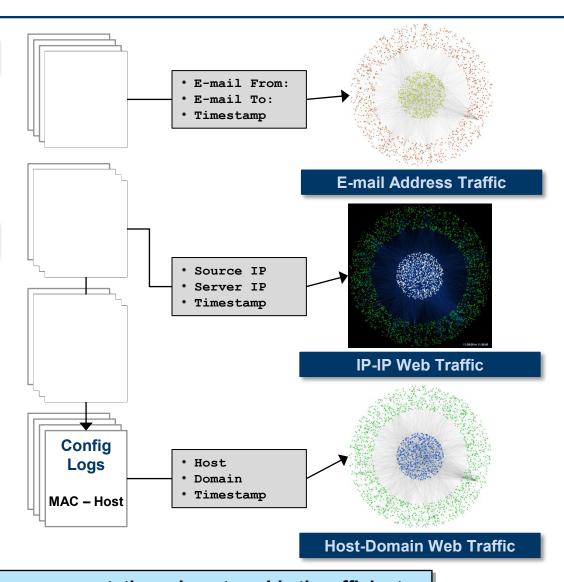
- Number of infected IPs: 1
- Number of event logs: 16,000
- % infected traffic: 0.37%
- Existing tools did not detect event
- Detection took 10 days and required manual log inspection

Challenge: Activity signature is typically a weak signal

Big Data Challenge: Data Representation

- Raw data sources are rarely stored in a graph format
- Data is often derived from multiple collection points

- Many different graphs can be built from a single data source
- Constructing a single graph may require many sources
- Building multi-graphs requires that entities be normalized



Challenge: Raw data source representations do not enable the efficient construction of graphs of interest

Technology Stack

Applicability Cyber, COIN, ISR, Bioinformatics **Graph Analytics** Resiliency Uncertainty in data and observation **Scalability** Parallel language support **High Level Languages Programmability** Automated performance optimization **Portability** Bindings to multiple databases **Distributed Storage and Indexing Elasticity** Virtual machine development **Performance** Novel instruction set architectures **High Performance Processing Efficiency** Specialized circuitry and communication

Outline

Introduction

- Course Outline
- Example Implementation
- Summary

The MIT Formula

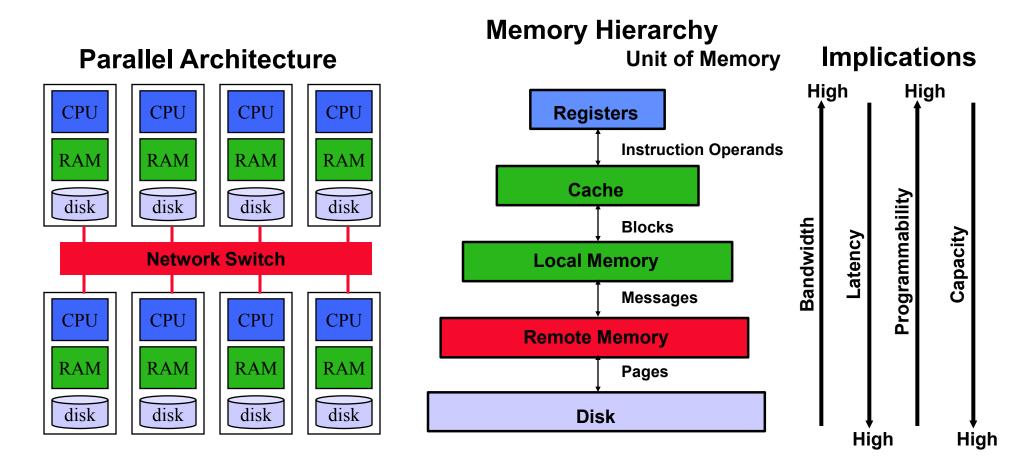
Theory

- Academics
- Departments
 - EECS, Math, Physics, ...
- Mathematics
- Algorithms
- Software

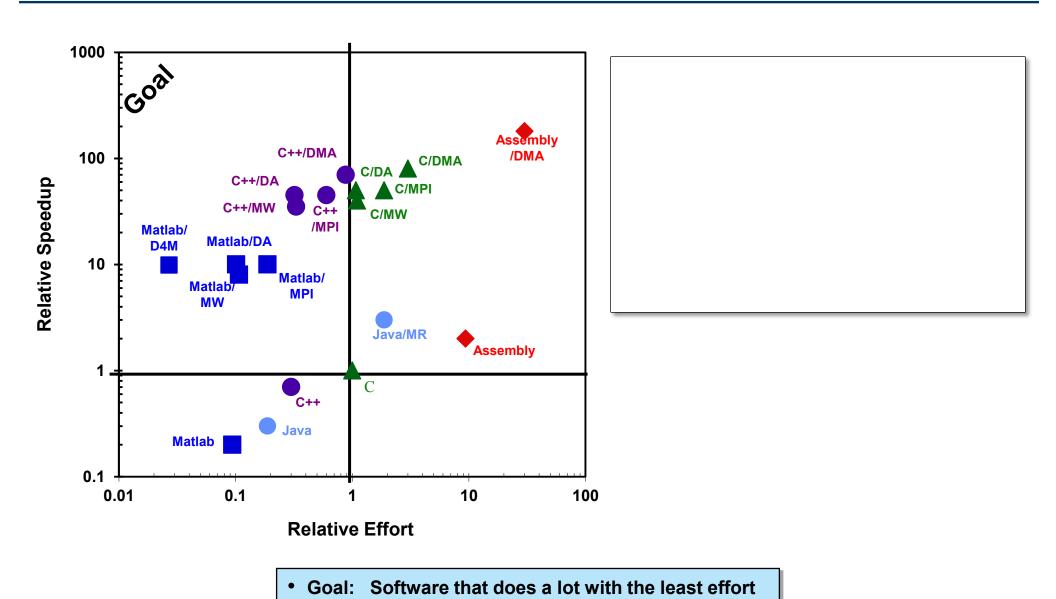
Experiment

- Research
- Laboratories
 - Lincoln, CSAIL, Media, ...
- Measurement
- Data
- Bytes

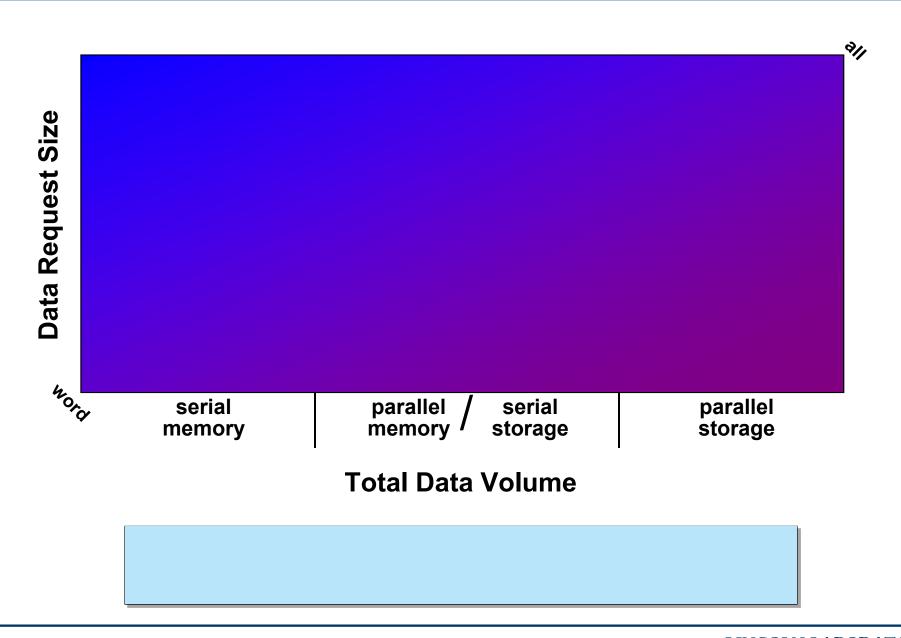
Software and Bytes Live on Parallel Computers



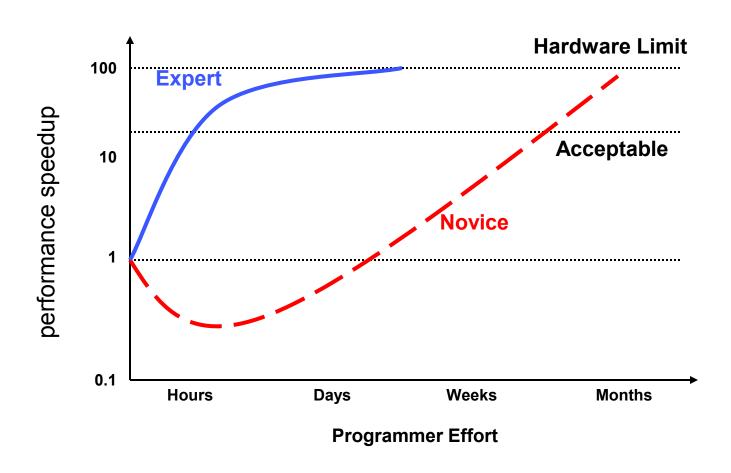
Software Performance vs. Parallel Programmer Effort



Data Use Cases



The Fast Path



 The class teaches the highest performance and lowest effort software techniques that are currently known

Key Course Concepts

- Bigger definition of a graph
 - How to move beyond random, undirected, unweighted graphs to power-law, directed, multi-hyper graphs
- Bigger definition of linear algebra
 - How to move beyond real numbers to doing math with words and strings
- Bigger definition of processing
 - How to move beyond map/reduce to distributed arrays programming

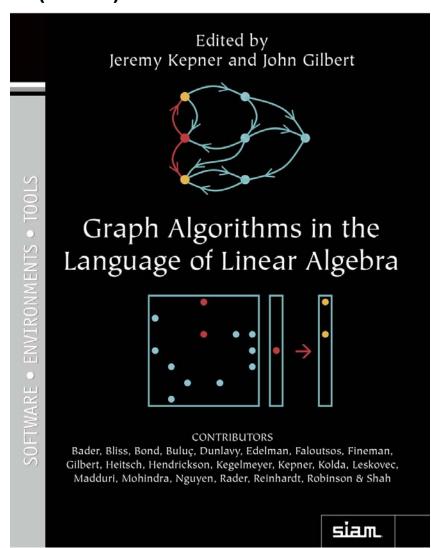
 These abstract concepts are the foundation for high performance signal processing on large unstructured data sets

Course Outline

- Introduction
 - Review course goals and structure
- Using Associative Arrays
 - Schemas, incidence matrices, and directed multi-hyper graphs
- Group Theory
 - Extending linear algebra to words using fuzzy algebra
- Entity Analysis in Unstructured Data
 - Reading and parsing unstructured data
- Analysis of Structured Data
 - Graph traversal queries
- Power Law Data
 - Models and fitting
- Cross Correlation
 - Sequence data, computing degree distributions, and finding matches
- Parallel Processing
 - Kronecker graphs, parallel data generation and computation
- Databases
 - Relational, triple store, and exploded schemas

References

- Book: "Graph Algorithms in the Language of Linear Algebra"
- Editors: Kepner (MIT-LL) and Gilbert (UCSB)
- Contributors:
 - Bader (Ga Tech)
 - Bliss (MIT-LL)
 - Bond (MIT-LL)
 - Dunlavy (Sandia)
 - Faloutsos (CMU)
 - Fineman (CMU)
 - Gilbert (USCB)
 - Heitsch (Ga Tech)
 - Hendrickson (Sandia)
 - Kegelmeyer (Sandia)
 - Kepner (MIT-LL)
 - Kolda (Sandia)
 - Leskovec (CMU)
 - Madduri (Ga Tech)
 - Mohindra (MIT-LL)
 - Nguyen (MIT)
 - Radar (MIT-LL)
 - Reinhardt (Microsoft)
 - Robinson (MIT-LL)
 - Shah (USCB)

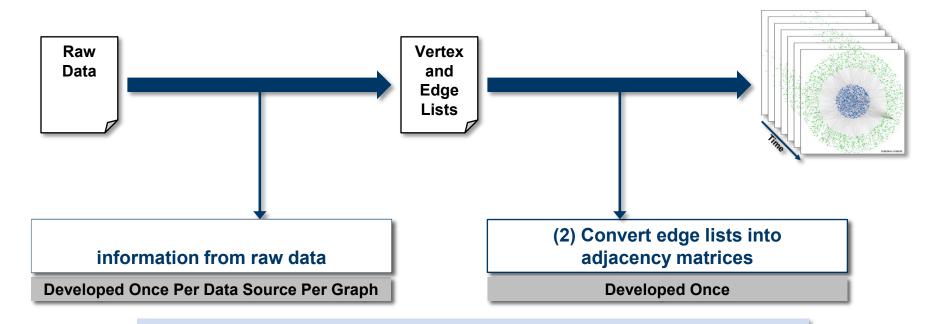


Outline

- Introduction
- Course Outline

- Example Implementation
- Summary

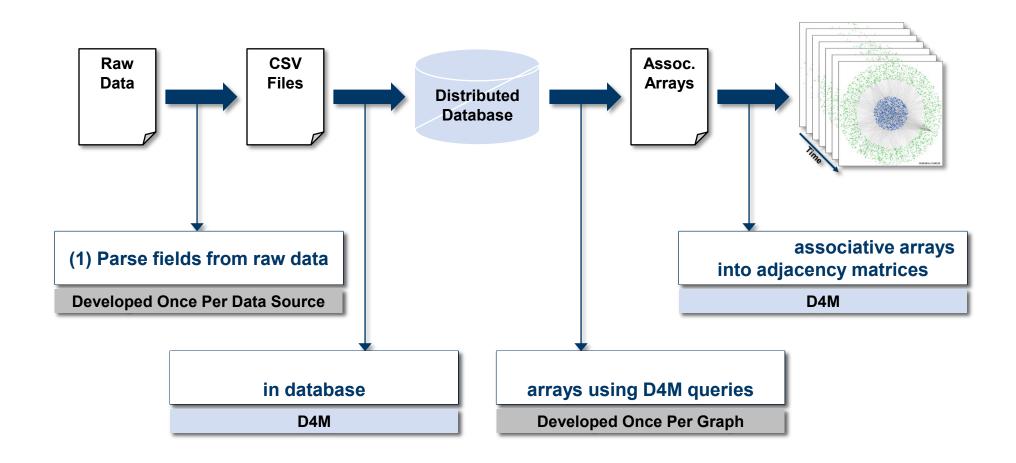
Constructing Graph Representations of Raw Data Source



- Raw data sources can contain information about multiple types of relations between entities
- The process of constructing a graph representation is specific to both the data source and the relationships represented by the graph

• The development time of parsing and graph construction algorithms can overwhelm the runtime of the algorithm

Graph Construction Using D4M



 D4M provides needed flexibility in the construction of large-scale, dynamic graphs at different resolutions and scopes

Graph Construction Using D4M: Parsing Raw Data Into Dense Tables

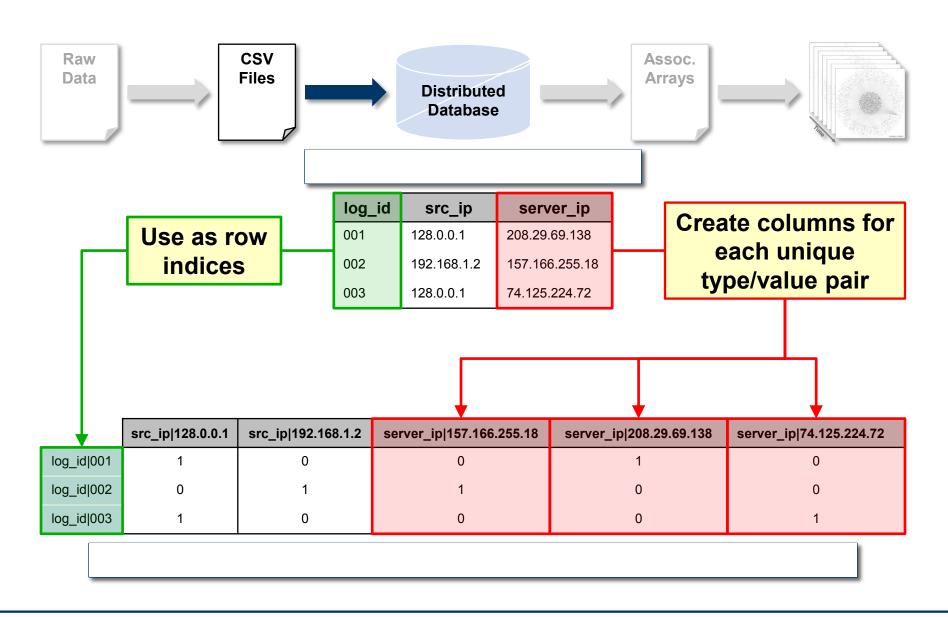
Proxy Logs

128.0.0.1 208.29.69.138 "-" [10/May/2011:09:52:53] "GET http://www.thedailybeast.com/ HTTP/1.1" 200 1024 8192 "http://www.theatlantic.com/" "Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.2.13) Gecko/20101209 CentOS/3.6-2.el5.centos Firefox/3.6.13" "bl" - "text/html" "MITLAB" 0.523 "-" Neutral TCP_MISS

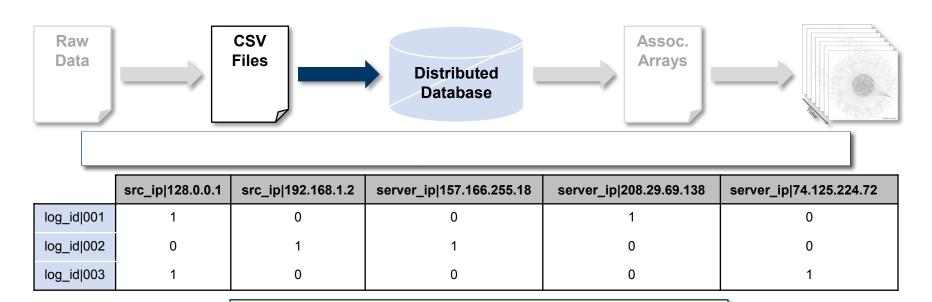
192.168.1.1 157.166.255.18 "-" [12/May/2011:13:24:11] "GET http://www.cnn.com/ HTTP/1.1" 335 256 10296 "-" "Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.2.13) Gecko/20101209 CentOS/3.6-2.e15.centos Firefox/3.6.13" "bu" - "text/html" "MITLAB" 0.784 "-" Neutral TCP_MISS

log_id	src_ip	server_ip	time_stamp	req_line	
001	128.0.0.1	208.29.69.138	10/May/2011:09:52:53	GET http://www.thedailybeast.com/ HTTP/1.1	
002	192.168.1.2	157.166.255.18	12/May/2011:13:24:11	GET http://www.cnn.com/ HTTP/1.1	
003	128.0.0.1	74.125.224.72	13/May/2011:11:05:12	GET http://www.google.com/ HTTP/1.1	
	:		:	:	

Graph Construction Using D4M: Explode Schema



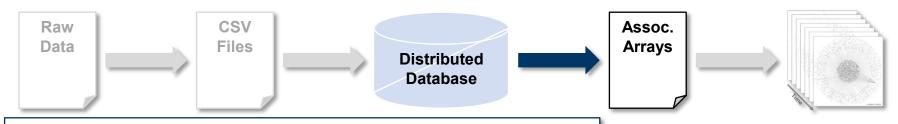
Graph Construction Using D4M: Storing Exploded Data as Triples



D4M stores the triple data representing both the exploded table and its transpose

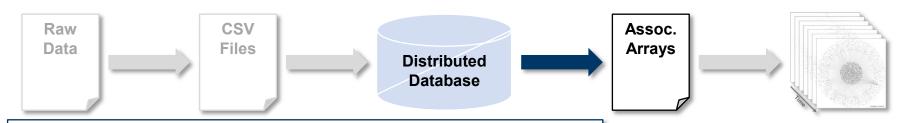
Row	Column	Value
log_id 001	src_ip 128.0.0.1	1
log_id 001	server_ip 208.29.69.138	1
log_id 002	src_ip 192.168.1.2	1
log_id 002	server_ip 157.166.255.18	1
log_id 003	src_ip 128.0.0.1	1
log_id 003	server_ip 74.125.224.72	1

Row	Column	Value
server_ip 157.166.255.18	log_id 002	1
server_ip 208.29.69.138	log_id 001	1
server_ip 74.125.224.72	log_id 003	1
src_ip 128.0.0.1	log_id 001	1
src_ip 128.0.0.1	log_id 003	1
src_ip 192.168.1.2	log_id 002	1



D4M Query #1

```
('log_id|001', 'time_stamp|11/May/2011:09:52:53',1)
('log_id|002', 'time_stamp|12/May/2011:13:24:11',1)
('log_id|003', 'time_stamp|13/May/2011:11:05:12',1)
...
```

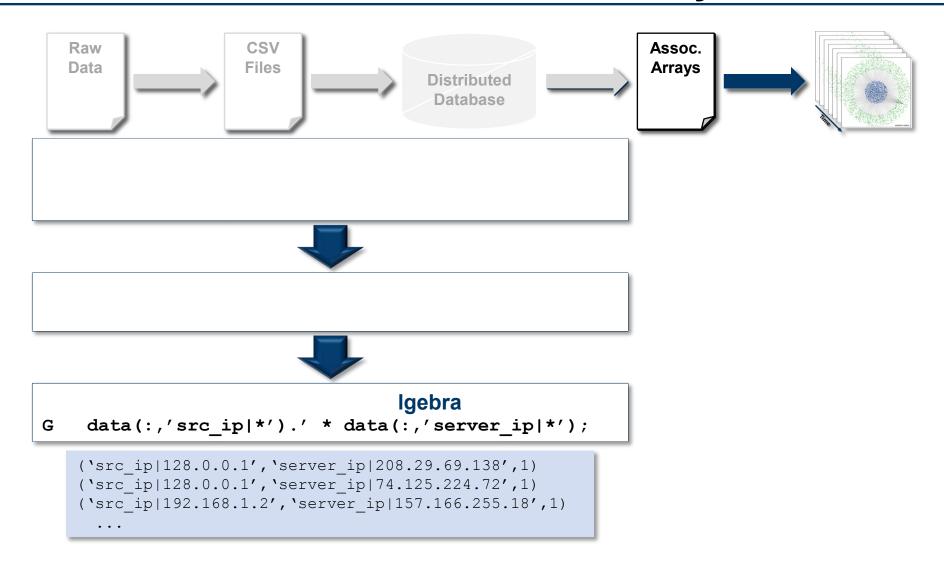



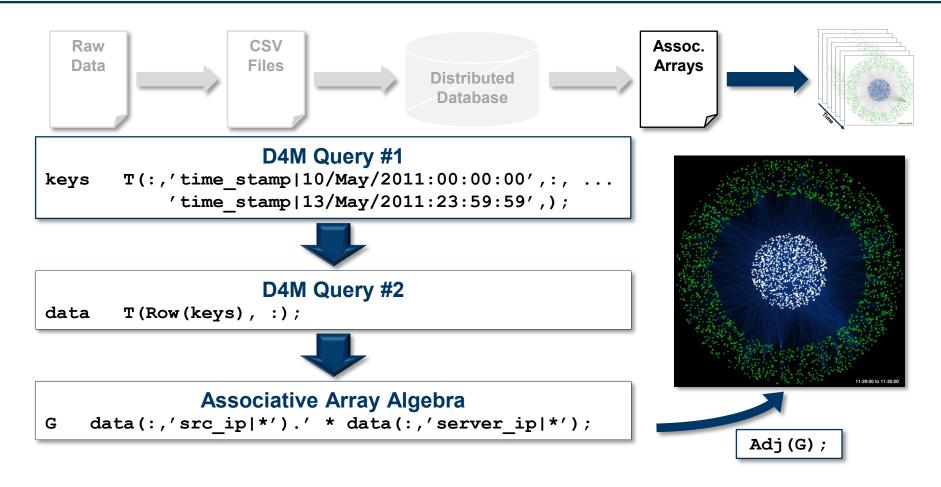
```
D4M Query #1
keys = T(:,'time_stamp|10/May/2011:00:00:00',:, ...
'time_stamp|13/May/2011:23:59:59',);
```


D4M Query #2

data = T(Row(keys), :);

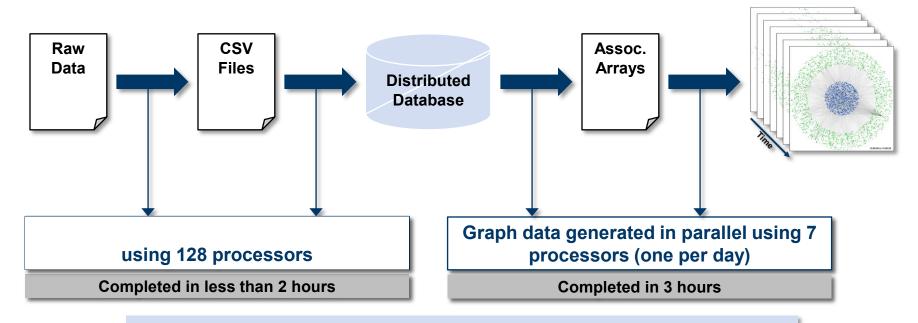
```
('log_id|001', 'server_ip|208.29.69.138',1)
('log_id|001', 'src_ip|128.0.0.1',1)
('log_id|001', 'time_stamp|11/May/2011:09:52:53',1)
...
('log_id|002', 'server_ip|157.166.255.18',1)
('log_id|002', 'src_ip|192.168.1.2',1)
('log_id|002', 'time_stamp|12/May/2011:13:24:11',1)
...
('log_id|003', 'server_ip|74.125.224.72',1)
('log_id|003', 'src_ip|128.0.0.1',1)
('log_id|003', 'time_stamp|13/May/2011:11:05:12',1)
...
```



 Graphs can be constructed with minimal effort using D4M queries and associative array algebra

Constructing Graph Representation of One Week's Worth of Proxy Data



- Ingested ~130 million proxy log records resulting in ~4.5 billion triples
- Constructed 604,800 secondwise source IP to server IP graphs
- Constructing graphs with different vertex types could be done without re-parsing or re-ingesting data

 Utilizing D4M could allow analysis to be run in nearly real-time (dependent on raw data availability)

Summary

- Big data is found across a wide range of areas
 - Document analysis
 - Computer network analysis
 - DNA Sequencing
- Currently there is a gap in big data analysis tools for algorithm developers
- D4M fills this gap by providing algorithm developers composable associative arrays that admit linear algebraic manipulation

Example Code and Assignment

- Example code
 - D4Muser_share/Examples/1Intro/1AssocIntro
- Assignment
 - Test your LLGrid account and D4M
 - Copy the D4Muser_share/Examples to your LL Grid home directory
 - Verify that you can run the above examples
 - Start Matlab
 - CD to your copy of the example
 - Run the Examples

MIT OpenCourseWare https://ocw.mit.edu

RES.LL-005 Mathematics of Big Data and Machine Learning IAP 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.