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&8 What is Artificial Intelligence?

Narrow Al: The theory and development of computer
systems that perform tasks that augment for human
intelligence such as perceiving, classifying, learning,

abstracting, reasoning, and/or acting

General Al: Full autonomy

%Emoyé‘% Definition adapted from Oxford dictionary and inputs from Prof. Patrick Winston (MIT) k}zgg&séﬁg&&f}jﬁgx
& Al. Why Now?
Big Data Compute Power Machine Learning Algorithms

Source: DARPA/ Public domain Source: DARPA/ Public domain

Convergence of High Performance Computing, Big Data and Algorithms that enable widespread Al
development
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Al Canonical Architecture

&

© IEEE. Figure 1 in Reuther, A., et al, "Survey and Benchmarking of Machine Learning Accelerators,” 2019 IEEE High Performancs Exireme Computing Conference 1HPEC) Waltham, MA, USA,
Sensors 2019, pp. 1-9, doi: 10.1109/HPEC.2019.8916327. All rights reserved. This content is excluded from our Creative Commons license. For more i see Users (Missions)
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TPU = Tensor Processing Unit

Select History of Artificial Intelligence

Al Winters 1974-1980 and 1987-1993 l \ }

Y Y

1950 - Computing 1956 - Dartmouth Summer 1979 - An 1982 - Expert 2001-present
Machinery and Research Project on Al Assessment glésh";';::"’;‘j:;! | BIG A T“°" - 2005 - Google’s Arabic and
Intelligence “Turing J. McCarthy, M. Minsky, of Al from 0 DATA CLLLLLIL Chinese to English translation
Test” by o & o e at Stanford - of very large
L i MIND vol. LIX C. Shannon, others Laboratory data sets
J. Forgie P
1955 - Western Joint Computer Conference 1857 - Frank and 'h:#'[‘f' === | 1984 - Hidden 2007 - DARPA 2011 - IBM Watson
Session on Learning Machines Rosenblatt iAo ol Markov models Grand defeats former
Neural publication Challenge Jeopardy! champions

(“Urban

(Brad Rutter and
Challenge’)

Ken Jennings)

Perceiving and 1989 -

1988 - Statistical
wAClark = GDinsen O.Slfidge iy Convolutional
A Machine Translation Neural Networks 2012 - Team from U. of Toronto
heognllillonlnasdf Fatem ™ " and odom (Geoff Hinton's Iab) wins the 2014 - Google’s GoogleNet
anizing fiach ol o o Large Scale Visual Object classification at near

= 1957 - Memory
Test Computer,

1958 - National Physical

networks

1986-present
The return of neural

recognition

first
to simulate the
operation of neural
networks

Laboratory in the UK
on the Mechani
zation of Thought Processes

1959 - Arthur Samuel
“Some studies in
machine learning
using the Game

of checkers” IBM
Journal of R&D

1960 - hand-
written characters, Robert
Larson of SRI Al Center

1961 - James Slagle, Solving
Freshman Calculus (Minsky
Student) MIT

1994 - Human-level
spontaneous speech

Recognition Challenge with
deep-learning software

human performance

2015 - DeepMind
human

1997 - IBM Deep Blue
defeats reigning chess
champion (Garry Kasparov)

expert level of play on
Atari games (using only
raw pixels and scores)

2016 - DARPA Cyber
Grand Challenge

2016 - DeepMind AlphaGo
defeats top human Go player
(Lee Sedol)

[
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Adapted from: The Quest for Artificial Intelligence, Nils J. Nilsson, 2010 and MIT Lincoln Laboratory Library and Archives
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Artificial Intelligence Evolution

Four Waves of Al
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& Data is Critical To
Breakthroughs in Al

Breakthroughs in Al Datasets (First Available) Algorithms (First Proposed)

1994  Human-level read-speech recognition

1997  IBM Deep Blue defeated Garry Kasparov

2005 Google’s Arabic- and Chinese-to-English
translation

2011 IBM Watson became the world Jeopardy!
champion

2014  Google’s GoogleNet object classification
at near-human performance

2015  Google’s Deepmind achieved human

parity in playing 29 Atari games by
learning general control from video

Average No. of Years to Breakthrough:

Spoken Wall Street Journal articles and
other texts (1991)

700,000 Grandmaster chess games, aka
“The Extended Book” (1991)

1.8 trillion tokens from Google Web and
News pages (collected in 2005)

8.6 million documents from Wikipedia,
Wiktionary, Wikiquote, and Project
Gutenberg (updated in 2010)

ImageNet corpus of 1.5 million labeled
images and 1,000 object categories (2010)

Arcade Learning Environment dataset of
over 50 Atari games (2013)

3 years

Hidden Markov Model (1984)
Negascout planning algorithm

(1983)

Statistical machine translation
algorithm (1988)

Mixture-of-Experts algorithm (1991)

Convolutional neural network
algorithm (1989)

Q-learning algorithm (1992)

18 years
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Al Canonical Architecture
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&

Unstructured and Structured Data

Data
Conditioning

Structured Data Types
<l. I@z)
&

Metadata

—_—

Sensors

bt

Network
Logs

Speech

Data Conditioning/Storage Technologies

- Data to Information -

Technologies

Infrastructure/Databases .
ORACLE *

accumuLo

Capabilities Provided

Indexing/Organization/Structure
Domain Specific Languages

* High Performance Data Access
+ Declarative Interfaces

Data Curation

Unstructured Data Types

ST i M

73

* Unsupervised machine learning
+ Dimensionality Reduction

+ Clustering/Pattern Recognition
* Outlier Detection

Data Labeling

o :

 Initial data exploration
» Highlight missing or incomplete data
Reorient sensors/recapture data

mi:: B::::Z . Reports cr?;ﬂzel Look for errors/biases in collection
Often takes up 80+% of overall AI/ML development work
%Emuyé%s LINCOLN LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
& Machine Learning Algorithms Taxonomy
Algorithms.
== 4| Symbolists Artificial Intelligence
< o] (e.g., exp. sys.)
x
() Bayesians . Machine L .
T — (e.g., naive ! achine Learning
% — O Bayes) 1
THE MASTER -
£ 1
ALGUR”HM § it Analogizers : Neural Nets
HOW THE QUEST FOR P (e.g., SVM)
THE UTMATE ) U !
LEARNING MACHINE WILL 1
REMAKE 06 WORLD z —~ 1 Deep Neural Nets
PEDRO DOMINGOS o T Connectionists :
eSS e (e.g., DNN) f
Evolutionaries
(e.g., genetic
*"The Five Tribes of Machine . ' prerammmg)

Learning”, Pedro Domingos

DNN = Deep Neural Networks
SVM = Support Vector Machines

Exp. Sys. = Expert Systems
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Image Adapted From “Deep Learning” by lan
Goodfellow, Yoshua Bengio and Aaron Courville




Modern Al Computing Engines

What It Provides to Al

CPU

* Most popular computing
platform

+ General purpose compute

GPU

* Used by most for training
algorithms (good for NN
backpropagation)

Class

TPU

+ Speeds up inference time
(domain specific architecture)

Neuromorphic

» Active research area

Computin

Custom

Ability to speed up
specific computations
of interest (e.g. graphs)

Quantum

Benefits unproven until now

Recent results on HHL
(linear system of equations)

Selected Results

Alexnet comparison: Forward-Backward Pass

Xoon-ES
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N |
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Neural Network Processing Performance

© IEEE. Figure 2 in Reuther, A., et al, "Survey and Benchmarking of Machine Leamning Accelerators," 2019 IEEE High Performance Extreme Compulmg Conference (HPEC), Waltham, MA USA,
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Robust Al: Preserving Trust

the Machine Making
the Decision

Confidence Level in

Confidence Level vs. Consequence of Actions

Hig

Low

Machines
Augmenting

Low

Consequence

High

of Actions
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&

Importance of Robust Al

Robust Al Feature

Explainable Al

Issue

User unfamiliarity or
mistrust leads to lack
of adoption

Unknown relationship
between arbitrary input
and machine output

Validation &
Verification

Security

Algorithms need to
meet mission
specifications
System vulnerable to
adversarial action (both
cyber and physical)

ITALIAN
ALEXA v

\ERS CAN DISABLE
SIPER RIFLE-OR CHANGE ITS
TARGET

Solutions

Seamless integration,
model expansion,
transparent uncertainty

Explainability, dimensionality
reduction, feature
importance inference

Robust training,
“portfolio” methods,
regularization

Model failure
detection, red
teaming

Policy, Ethics,
Safety, and Training

Unwanted actions when
controlling heavy or
dangerous machinery

Risk sensitivity,
robust inference, high
decision thresholds
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Human-Machine Teaming

Scale vs. Application Complexity
Human-
Machine High
Teaming Machines More
Effectivethan o
Humans _ ~#
— =
% Machines
o Augmenting
€N Humans
o
Human-Machine A Lumans Mg
Teaming (CoA) ’ Effective than
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- Low
Knowledge g Human Insight Low Application Complexity High
H Machi
Complement Confidence Level vs. Consequence of Actions
D Machine I
U
Spectrum g
e Machines
= Augmenting
. . . s- Humans
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consist of intelligent assistants -
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&8 What is Machine Learning?

* Machine Learning
— Study of algorithms that improve their performance at some task with experience (data)
— Optimize based on performance criterion using example data or past experience

+ Combination of techniques from statistics, computer science communities

+ Getting computers to program themselves

+« Common tasks:
— Classification

— Regression

— Prediction

— Clustering
%“’J}"&f klN COLN[ LABOR:rATORY
@ Traditional Programming vs. Machine Learning

Traditional Programming

Data

Output
Program

Machine Learning

Data
Output

Program

wggg LINCOLN LABORATORY
Source: Pedro Domingos, University of Washington MASSACHUSETTS INSTITUTE OF TECHNOLOGY
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[E]

Machine Learning Techniques

Supervised Unsupervised Reinforcement
(Labels) (No Labels) (Reward Information)
@[ Machine Learning Techniques
Supervised Unsupervised Reinforcement
(Labels) (No Labels) (Reward Information)
Classification Clustering

Aland ML -24
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@[ Machine Learning Techniques

Supervised
(Labels)

Classification

Naive
Bayes

Logistic
Regression

Linear
Regression
Non-Linear
Regression
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Dimensionality
Reduction

Unsupervised
(No Labels)

Clustering

Hierarchical
Methods

Kernel
PCA

Reinforcement
(Reward Information)

Markov
Decision
Processes

LINCOLN LABORATORY

@[ Machine Learning Techniques

Supervised
(Labels)

Classification

Logistic
Regression @

K Nearest
neighbors

Spectral
Methods

Neural
;I're: b.ased Nets
S naues Embedded
N Methods
(Multiple)
Linear
Regression
Non-Linear Filter
Regression L Methods
Wrapper
Regression _—"\\__Methods
Aland ML-26
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Learning

Unsupervised
(No Labels)

Clustering

Hierarchical
Methods

Reinforcement
(Reward Information)

Markov
Decision
Processes

Dimensionality
Reduction
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& Common ML Pitfalls

» Over-fitting vs. Under-fitting
+ Bad/noisy/missing data

* Model selection

* Lack of success metrics

* Linear vs. Non-linear models
 Ignoring outliers

« Training vs. testing data

+ Computational complexity, curse of dimensionality

« Correlation vs. Causation
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&8 Supervised Learning

+ Starting with labeled data (ground Training Data
truth)

+ Build a model that predicts labels

+ Two general goals:
— Regression: predict continuous variable Train
— Classification: predict a class or label Model

Generally has a training step that

forms the model Test Data Predicted
Data Labels
cNﬂéﬂO’:ﬂgx LlN(_:OLN LABORATORY
& Artificial Neural Networks

« Computing systems inspired by biological networks
+ Systems learn by repetitive training to do tasks based on
examples

— Generally a supervised learning technique (though
unsupervised examples exist)

« Components: Inputs, Layers, Outputs, Weights ! LN\ Y
| ) - |
* Deep Neural Network: Lots of “hidden layers” RSN
: Y N
* Popular variants: B () A
— Convolutional Neural Nets O N
— Recursive Neural Nets N~ ~T 5
— Deep Belief Networks N

* Very popular these days with many toolboxes and hardware
support
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& Deep Neural Networks

yo bo b1 b2 ys

Yis1 = f(Wiyi + b))

© RSIP. All rights reserved. This content is excluded from our Creative Commons license. For more see ¥ mit.
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& Components of an Artificial Neural Network

-0.06 Activation
Function

Inputs

Neuron/Node

© Drexel University. All rights reserved. This content is excluded from our Creative
f : o

1.4

.
ht S Commons license. For more

Aland ML-32 _ LINCOLN LABORATORY
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& Components of an Artificial Neural Network

-0.06

2.5

x= 0.06X2.7+2.5%8.6+1.4%0.002 =21.34
f(x) = 1
1.4

© Drexel University. All rights reserved. This content is excluded from our Creative
For more it ion, see itedwhelp/fag-fair-u

Commons license. m e i
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& Common Activation Functions

* Step Function: f(x) = {(1); ; g - > |
il
* Sigmoid Function: f(x) = —————>
* Tanh Function: f(x) = tanh(x) _ —
* Rectified Linear Unit (ReLU): f(x) = max(0, X j——— .....
AlandML-34 - - : - LINCOLN LABORATORY
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@ Neural Network Landscape

© Fjodor van Veen and Stefan Leijnen. All rights reserved. This content is excluded from our
Creative Commons license. For more ion, see L [ fairuse/
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@ Neural Network Training

Key Idea: Adjusting the weights changes the function represented by the neural network
(learning = optimization in weight space).

Iteratively adjust weights to reduce error (difference between network output and target
output)

Weight Update
— perceptron training rule
— linear programming
— delta rule
— Backpropagation

Real neural network architectures can have 1000s of input data points, hundreds of
layers and millions of weight changes per iteration

Aland ML-36 LINCOLN LABORATORY
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& Neural Network Inference

* Using the trained model on previously “unlabeled” data

Aland ML-37 LINCOLN LABORATORY
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@ Neural Network Learning: Decision Boundary
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@ Designing a Neural Network

* Designing a neural network can be a complicated task.
* Many choices:

* Depth (number of layers * Types of layers: * Training Algorithm
y y y g Alg
- Inputs (number of inputs) — MaxPool — Performance vs. Quality
T FN K — Dropout — Stopping criteria
ype of Network: — Convolutional — Performance function
— Convolutional Neural Network _ Deconvolutional Metrics:
— Deep Feedforward Neural _ Softmax etrics: .
Network — False positive
— Deep Belief Network - Fu!ly Connected — ROC curve
— Long/Short Term Memory — Skip Layer -
[ LINCOLN LABORATORY
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@ Outline

+ Artificial Intelligence Overview

* Machine Learning Deep Dives
— Supervised Learning

|:> — Unsupervised Learning

— Reinforcement Learning

+ Conclusions/Summary
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@ Unsupervised Learning

» Task of describing hidden structure from unlabeled data

* More formally, we observe features X, X,...,X,, and would like to observe patterns
among these features.

* We are not interested in predcition because we don’t know what an output Y would look like.

» Typical tasks and associated algorithms:
» Clustering
» Data projection/Preprocessing

Goal is to discover interesting things about the dataset: subgroups, patterns,
clusters?

Aland ML-41 LINCOLN LABORATORY
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@ More on Unsupervised Learning

» There is no good simple goal (such as maximizing certain probability) for the algorithm

* Very popular because techniques work on unlabeled data
— Labeled data can be difficult and expensive

+ Common techniques:

— Clustering
+ K-Means
+ Nearest neighbor search
- Spectral clustering

— Data projection/preprocessing
+ Principal component analysis
« Dimensionality Reduction
- Scaling

Aland ML-42 LINCOLN LABORATORY
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@ Clustering

» Group objects or sets of features such that
objects in the same cluster are more similar
than those of another cluster

» Optimal clusters should
— Minimize intra-cluster distance
— Maximize inter-cluster distance

+ Example of intra-cluster measure
- Squared error se

k 2
se=2, 2 |p—mf

3 ree >
i=1 pec;

where m; is the mean of all features in cluster c;

Aland ML-43 LINCOLN LABORATORY
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@ Dimensionality Reduction

* Process of reducing number of random variables under consideration
— Key idea: Reduce large dataset to much smaller dataset using only high variance dimensions

+ Often used to simplify computation or representation of a dataset

» Typical tasks:
— Feature Selection: try to find a subset of original variables
— Feature Extraction: try to represent data in lower dimensions

+ Often key to good performance for other machine learning techniques such as
regression, classification, etc.

* Other uses:

— Compression: reduce dataset to smaller representation
— Visualization: easy to see low dimensional data
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@ Neural Networks and Unsupervised Learning

* Traditional applications of neural networks such as Image classification fall into the
realm of supervised learning:
— Given example inputs x and target output y, learn the mapping between them.
— A trained network is supposed to give the correct target output for any input stimulus

— Training is learning the weights

* Largely used to find better representations for data: clustering and dimensionality
reduction

* Non linear capabilities

LINCOLN LABORATORY
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@ Example: Autoencoders

* Neural network architecture designed to find a compressed representation for data
* Feedforward, multi layer perceptron.
* Input layer number of features = output layer number of features

* Similar to dimensionality reduction but allows for much more complex
representations

Encoder Decoder

Inputs
jnduy
pajonisuodady

Compressed

Representation
© Leonardo Araujo dos Santos. All rights reserved. This content

is excluded from our Creative Commons license. For more
ion, see Qiips:/ocw. mit fair-us
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@ Example: Replicator Neural Network

* Conceptually, very similar to autoencoders
[ ]

Used extensively for anomaly detection (looking for outliers)
[ ]

Example architecture

* Salient differences from an autoencoder: Step Activation
Function, Inclusion of dropout layers

— Step activation squeezes the middle layer outputs into a number of
clusters

— Dropout layers help with overfitting
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@ Outline

+ Artificial Intelligence Overview
* Machine Learning Deep Dives
— Supervised Learning
— Unsupervised Learning
|:> — Reinforcement Learning

+ Conclusions/Summary
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@ Reinforcement Learning

+ What makes reinforcement learning different
from other machine learning paradigms?

— There is no supervisor, only a reward signal
— Feedback is delayed, not instantaneous

— Time really matters (sequential, often inter-
dependent data)

— Agent’s actions affect the subsequent data it
receives

+ Example: Playing Atari game
— Rules of the game are unknown
— Learn directly from interactive game-play
— Pick actions on joystick, see pixels and scores

observation action

B ]
b
_&J

t
© David Silver. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/
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@ Other Reinforcement Learning Examples

Fly stunt maneuvers in a helicopter
— + reward for following desired trajectory
— =reward for crashing

Defeat the world champion at Backgammon
— +/- reward for winning/losing a game

+ Manage an investment portfolio

— + reward for each $ in bank

» Control a power station
— + reward for producing power
— —reward for exceeding safety thresholds

* Make a humanoid robot walk
— + reward for forward motion
— =reward for falling over
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@ Outline

« Artificial Intelligence Overview

* Machine Learning Deep Dives
— Supervised Learning
— Unsupervised Learning
— Reinforcement Learning

|:> + Conclusions/Summary
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@ Summary

Lots of exciting research into AI/ML techniques

— This course looks at a number of relatively easy strategies to mitigate these challenges
Key ingredients for Al success:

— Data Availablity

— Computing Infrastructure

— Domain Expertise/Algorithms

Large challenges in data availability and readiness for Al

MIT SuperCloud platform (next presentation) can be used to perform the heavy
computation needed

Further reading:
— "Al Enabling Technologies: A Survey.” https://arxiv.org/abs/1905.03592
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