

Hir	Anomaly Detection
• 6	General techniques for outlier detection (with exemplar technique):
-	 Statistics: Look for changes in patterns/distributions (e.g., dimensional analysis)
-	 Clustering: cluster input data based on a set of features (e.g., k-means)
-	 Distance-based: Look for observations that are very far from other observations (e.g., k- nearest neighbor)
-	 Model-based techniques such as ANNs: Come up with a background model and look for deviations from the expected (e.g., replicator neural network)
	Given the complexity of network traffic, we use a model based technique
Slide - 4	Chandola, Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly detection: A survey." ACM computing surveys (CSUR) 41.3 (2009): 15.

Data Conditioning (3)			
 Parse Flows Machine learning models require conversion of binary flow format into some tabular form 	© CMU. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mt.edu/heloifas-fair-usal</u> start-time end-time duration rtt proto sip sp dip dp iflags uflags riflag s ruflags isn risn tag rtag ptt oct rpkt roct end-reason		
YAF comes with a tool: yafscii to convert binary flows into a human readable form	$\begin{array}{c} 2019-06-1205:00:00.339 \left 2019-06-1205:00:00.339 \right 0.000 \left 0.000 \right 6 \left 92.114.98.25 \right. \\ 3 \left[57453 \right] 133.133.201.228 \left] 1122 \left R \left 0 \right 0 \right 0 \left[52623a7 \right] 0000000 \left 0 000 \right 0 \left 160 \right 0 \right \right. \\ 2019-06-1205:00:00.342 \left] 2019-06-1205:00:00.342 \left 0.000 \right 0.000 \left 6 \left 81.233.210.15 \right. \\ 3 \left 49117 \right 203.77.66.233 \left 35351 \right S \left 0 \right AR \left 0 \right 6ec54fc7 \right 00000000 \left 000 \right 0 0 \left 1 \left 40 \right \right 40 \right \\ 2019-06-1205:00:00.346 \left 2019-06-1205:00:00.346 \left 0.000 \right 6 \left 000 \right 0 \left 199.22.150.1 \right. \\ 99 \left 7914 \left 203.77.59.208 \right 3280 \left AS \left 0 \right R \left 0 \right X44ffff \left 6 b dd0500 \left 000 \right 0 \left 1 \left 40 \right \right 40 \right \\ \end{array}$		
 For our pipeline: We convert each of the .yaf files into a .txt file using yafscii Typical size of this ascii table is: 8GB 	2019-06-1205:00:00.339 2019-06-1205:00:00.347 0.008 0.008 6 109.222.150.1 99 7914 163.34.115.76 35890 A5 0 R 0 5c22ffff cc7d0500 000 000 140 140 2019-06-1205:00:00.340 2019-06-1205:00:00.348 0.008 0.008 6 109.222.150.1 99 7914 163.34.183.104 791 A5 0 R 0 5c22ffff 4580100 000 000 140 140 140 2019-06-1205:00:00.350 2019-06-1205:00:00.350 0.000 0.000 6 203.77.79.17 1 787]185.175.199.126 48150 AR 0 0 0000000 0000000 0000000 140 0 0		
 Fypical size of this asch table is: oob Each line of the output text file corresponds to a single flow Following fields are recorded for each flow: 	2019-06-1205:00:00.350 2019-06-1205:00:00.355 0.000 0.000 6 177.56.103.20 3 6748 202.217.209.251 50591 AR 0 0 0 00000000 00000000 000 000 000 1 40 0 0 2019-06-1205:00:00.351 2019-06-1205:00:00.351 0.000 0.000 6 133.100.214.1 70 7717 185.175.199.126 48150 AR 0 0 0 00000000 00000000 000 000 1 40 0 0 2019-06-1205:00:00.354 2019-06-1205:00:00.354 0.000 0.000 6 133.100.202.1		
start-time end-time duration rtt proto sip sp dip dp iflags uflags riflags	43 53854 52.124.194.61 443 R 0 0 0 5126639a 000000000000000000000000000000000000		
Side-13 Yaf: https://tools.ne	etsa.cert.org/yaf/yaf.html		

Features of interest	Explanation
Source IP	Source IP address
Source Port	Source port
Destination IP	Destination IP address
Destination Port	Destination port
Protocol	IP protocol
Initial Flags	Forward first-packet TCP flags
Union Flags	Forward nth-packet TCP flags union
Reverse Initial Flags	Reverse first-packet TCP flags
Reverse Union Flags	Reverse nth-packet TCP flags union
End reason	Indicate whether the flow was ended normally (i.e., by TCP RST or FIN), expired by idle timeout, or expired by active timeout.
Destination IP Destination Port	Combination of Destination IP and Destination Port
Destination IP Initial Flags	Combination of Destination IP and Initial Flags
Source IP Destination IP	Combination of Source IP and Destination IP
Source IP Initial Flags	Combination of Source IP and Initial Flags

RES.LL-005 Mathematics of Big Data and Machine Learning IAP 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.