

3 October 2012

Signal Processing on Databases

Jeremy Kepner

Lecture 0: Introduction

This work is sponsored by the Department of the Air Force under Air Force Contract
#FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are
those of the authors and are not necessarily endorsed by the United States Government.

1

1

Acknowledgements

• Nicholas Arcolano

• Michelle Beard

• Nadya Bliss

• Josh Haines

• Matthew Schmidt

• Ben Miller

• Benjamin O’Gwynn

• Tamara Yu

• Bill Arcand

• Bill Bergeron

• David Bestor

• Chansup Byun

• Matt Hubbell

• Pete Michaleas

• Julie Mullen

• Andy Prout

• Albert Reuther

• Tony Rosa

• Charles Yee

• Dylan Hutchinson

2

2

 Outline

• Introduction

• Course Outline

• Example Implementation

• Summary

3

3

Example Applications of Graph Analytics

• Cross-Mission Challenge: Detection of subtle patterns in massive
multi-source noisy datasets

Cyber

• Graphs represent
communication patterns of
computers on a network

• 1,000,000s – 1,000,000,000s
network events

• GOAL: Detect cyber attacks
or malicious software

Social

• Graphs represent
relationships between
individuals or documents

• 10,000s – 10,000,000s
individual and interactions

• GOAL: Identify hidden
social networks

ISR

• Graphs represent entities
and relationships detected
through multi-INT sources

• 1,000s – 1,000,000s tracks
and locations

• GOAL: Identify anomalous
patterns of life

4

4

Example Applications of Graph Analytics

• Cross-Mission Challenge: Detection of subtle patterns in massive
multi-source noisy datasets

Cyber

• Graphs represent
communication patterns of
computers on a network

• 1,000,000s – 1,000,000,000s
network events

• GOAL: Detect cyber attacks
or malicious software

Social

• Graphs represent
relationships between
individuals or documents

• 10,000s – 10,000,000s
individual and interactions

• GOAL: Identify hidden
social networks

• Graphs represent entities
and relationships detected
through multi-INT sources

• 1,000s – 1,000,000s tracks
and locations

• GOAL: Identify anomalous
patterns of life

ISR

 Social

• Graphs represent
relationships between
individuals or documents

• 10,000s – 10,000,000s
individual and interactions

• GOAL: Identify hidden
social networks

• Graphs represent entities
and relationships detected
through multi-INT sources

• 1,000s – 1,000,000s tracks
and locations

• GOAL: Identify anomalous
patterns of life

ISR

5

5

Example: Web Traffic Graph

Traffic
(Proxy Logs)

Source Computer IPs

Web Server IPs

Graph Statistics

• 90 minutes worth of traffic
• 1 frame = 1 minute of traffic

• Number of source computers: 4,063
• Number of web servers: 16,397

• Number of logs: 4,344,148

Malicious Activity Statistics

• Number of infected IPs: 1
• Number of event logs: 16,000
• % infected traffic: 0.37%

• Existing tools did not detect event
• Detection took 10 days and required

manual log inspection

Challenge: Activity signature is typically a weak signal

6

6

Big Data Challenge: Data Representation

Challenge: Raw data source representations do not enable the efficient
construction of graphs of interest

• Raw data sources are rarely stored
in a graph format

• Data is often derived from multiple
collection points

Data Sources

• Many different graphs can be built
from a single data source

• Constructing a single graph may
require many sources

• Building multi-graphs requires that
entities be normalized

Graph Construction

E-mail Address Traffic

SMTP
Logs • E-mail From:

• E-mail To:
• Timestamp

Config
Logs

MAC – Host

Web
Proxy
Logs

DHCP
Logs

IP – MAC
IP-IP Web Traffic

• Source IP
• Server IP
• Timestamp

Host-Domain Web Traffic

• Host
• Domain
• Timestamp

DHCP
Logs
DHCP
Logs
DHCP
Logs

DHCP
Logs
DHCP
Logs
DHCP
Logs

DHCP
Logs
DHCP
Logs
DHCP
Logs

DHCP
Logs
DHCP
Logs
DHCP
Logs

7

7

Technology Stack

High Level Languages

Graph Analytics

Distributed Storage and Indexing

High Performance Processing

Applicability
• Cyber, COIN, ISR, Bioinformatics

Resiliency
• Uncertainty in data and observation

Scalability
• Parallel language support

Programmability
• Automated performance optimization

Portability
• Bindings to multiple databases

Elasticity
• Virtual machine development

Performance
• Novel instruction set architectures

Efficiency
• Specialized circuitry and communication

8

8

 Outline

• Introduction

• Course Outline

• Example Implementation

• Summary

9

9

The MIT Formula

• Academics

• Departments

– EECS, Math, Physics, …

• Mathematics

• Algorithms

• Software

Theory

+
• Research

• Laboratories

– Lincoln, CSAIL, Media, …

• Measurement

• Data

• Bytes

Experiment

=

• MIT is the #1 Science and Engineering University on Earth

• A simple formula for success permeates all of MIT

• Implementing this formula often reduces to software and bytes

D
iscovery

10

10

Software and Bytes
Live on Parallel Computers

Memory Hierarchy
Parallel Architecture Unit of Memory Implications

High High

Instruction Operands

Blocks

Messages

Pages

Registers

Cache

Local Memory

Disk

Remote Memory

High High

CPU

RAM

disk

CPU

RAM

disk

CPU

RAM

disk

CPU

RAM

disk

CPU

RAM

disk

CPU

RAM

disk

CPU

RAM

disk

CPU

RAM

disk

Network Switch

B
an

dw
id

th

La
te

nc
y

Pr
og

ra
m

m
ab

ili
ty

C
ap

ac
ity

• Nearly all modern computers are Von Neumann architectures with multi-level memory hierarchies

• The architecture selects the algorithms and data that run well on it

11

11

R
el

at
iv

e
Sp

ee
du

p
Software Performance

vs. Parallel Programmer Effort

1000

100

10

1

0.1

Relative Effort

0.01 0.1 1 10 100

Assembly

Assembly
/DMA

C

C/DMA

C/MPI

C/MW

C/DA

C++

C++/DMA

C++
/MPI

C++/MW

C++/DA

Matlab

Matlab/
MPI Matlab/

MW

Matlab/DA

Java

Java/MR

Matlab/
D4M

Parallel Programming Models

DMA = Direct Memory Access
MPI = Message Passing
DA = Distributed Arrays
MW = Manager/Worker
MR = Map/Reduce
D4M = Dynamic Distributed

Dimensional Data Model

• Goal: Software that does a lot with the least effort

12

12

Data Use Cases

• Data volume and data request size determine best approach

• Always want to start with the simplest and move to the most complex

Total Data Volume

D
at

a
R

eq
ue

st
 S

iz
e

serial
memory

serial
storage

parallel
memory

parallel
storage /

Serial Program Serial or Parallel Program
+ Database

Parallel Program
+ Parallel Database

Serial Program Serial or Parallel Program
+ Files

Parallel Program
+ Parallel Files

13

13

The Fast Path

pe
rfo

rm
an

ce
 s

pe
ed

up

Acceptable

Hardware Limit
Expert

Novice

100

10

1

0.1
Hours Days Weeks Months

Programmer Effort

• The class teaches the highest performance and lowest effort software
techniques that are currently known

14

14

 Key Course Concepts

• Bigger definition of a graph

– How to move beyond random, undirected, unweighted graphs to
power-law, directed, multi-hyper graphs

• Bigger definition of linear algebra

– How to move beyond real numbers to doing math with words and
strings

• Bigger definition of processing

– How to move beyond map/reduce to distributed arrays programming

• These abstract concepts are the foundation for high performance signal
processing on large unstructured data sets

15

15

 Course Outline

• Introduction
– Review course goals and structure

• Using Associative Arrays
– Schemas, incidence matrices, and directed multi-hyper graphs

• Group Theory
– Extending linear algebra to words using fuzzy algebra

• Entity Analysis in Unstructured Data
– Reading and parsing unstructured data

• Analysis of Structured Data
– Graph traversal queries

• Power Law Data
– Models and fitting

• Cross Correlation
– Sequence data, computing degree distributions, and finding matches

• Parallel Processing
– Kronecker graphs, parallel data generation and computation

• Databases
– Relational, triple store, and exploded schemas

16

16

 References

• Book: “Graph Algorithms in the Language of Linear Algebra”

• Editors: Kepner (MIT-LL) and Gilbert (UCSB)
• Contributors:

– Bader (Ga Tech)
– Bliss (MIT-LL)
– Bond (MIT-LL)
– Dunlavy (Sandia)
– Faloutsos (CMU)
– Fineman (CMU)
– Gilbert (USCB)
– Heitsch (Ga Tech)
– Hendrickson (Sandia)
– Kegelmeyer (Sandia)
– Kepner (MIT-LL)
– Kolda (Sandia)
– Leskovec (CMU)
– Madduri (Ga Tech)
– Mohindra (MIT-LL)
– Nguyen (MIT)
– Radar (MIT-LL)
– Reinhardt (Microsoft)
– Robinson (MIT-LL)
– Shah (USCB)

17

17

 Outline

• Introduction

• Course Outline

• Example Implementation

• Summary

18

18

Constructing Graph Representations
of Raw Data Source

Raw
Data

Vertex
and

Edge
Lists

(2) Convert edge lists into
adjacency matrices

Developed Once

(1) Parse edge and vertex

Developed Once Per Data Source Per Graph

information from raw data

• Raw data sources can contain information about multiple types of
relations between entities

• The process of constructing a graph representation is specific to both
the data source and the relationships represented by the graph

• The development time of parsing and graph construction algorithms
can overwhelm the runtime of the algorithm

19

19

Graph Construction Using D4M

• D4M provides needed flexibility in the construction of large-scale,
dynamic graphs at different resolutions and scopes

Distributed
Database

Raw
Data

CSV
Files

Assoc.
Arrays

Developed Once Per Data Source

(4) Convert

D4M

(3) Construct associative

Developed Once Per Graph

(2) Explode schema and store

D4M

(1) Parse fields from raw data
associative arrays

into adjacency matrices

arrays using D4M queries in database

20

20

Graph Construction Using D4M:
Parsing Raw Data Into Dense Tables

Distributed
Database

Raw
Data

CSV
Files

Assoc.
Arrays

Proxy Logs

128.0.0.1 208.29.69.138 "-" [10/May/2011:09:52:53] "GET http://www.thedailybeast.com/ HTTP/1.1“ 200

1024 8192 "http://www.theatlantic.com/" "Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.2.13)

Gecko/20101209 CentOS/3.6-2.el5.centos Firefox/3.6.13" "bl“ - "text/html" "MITLAB“ 0.523 "-"

Neutral TCP_MISS

192.168.1.1 157.166.255.18 “-” [12/May/2011:13:24:11] "GET http://www.cnn.com/ HTTP/1.1“ 335 256

10296 "-" "Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.2.13) Gecko/20101209 CentOS/3.6-

2.e15.centos Firefox/3.6.13" “bu" - "text/html" “MITLAB" 0.784 "-“ Neutral TCP_MISS
...

log_id src_ip server_ip time_stamp req_line ...
001 128.0.0.1 208.29.69.138 10/May/2011:09:52:53 GET http://www.thedailybeast.com/ HTTP/1.1 …

002 192.168.1.2 157.166.255.18 12/May/2011:13:24:11 GET http://www.cnn.com/ HTTP/1.1 …

003 128.0.0.1 74.125.224.72 13/May/2011:11:05:12 GET http://www.google.com/ HTTP/1.1 …

Dense Table

21

21

https://Firefox/3.6.13
https://rv:1.9.2.13
http://www.cnn.com
https://157.166.255.18
https://Firefox/3.6.13
https://rv:1.9.2.13
http://www.theatlantic.com
http://www.thedailybeast.com

Graph Construction Using D4M:
Explode Schema

Distributed
Database

Raw
Data

CSV
Files

Assoc.
Arrays

log_id src_ip server_ip

001 128.0.0.1 208.29.69.138

002 192.168.1.2 157.166.255.18

003 128.0.0.1 74.125.224.72

Dense Table

src_ip|128.0.0.1 src_ip|192.168.1.2 server_ip|157.166.255.18 server_ip|208.29.69.138 server_ip|74.125.224.72

log_id|001 1 0 0 1 0

log_id|002 0 1 1 0 0

log_id|003 1 0 0 0 1

Exploded Table

Use as row
indices

Create columns for
each unique

type/value pair

22

22

Graph Construction Using D4M:
Storing Exploded Data as Triples

Distributed
Database

Raw
Data

CSV
Files

Assoc.
Arrays

src_ip|128.0.0.1 src_ip|192.168.1.2 server_ip|157.166.255.18 server_ip|208.29.69.138 server_ip|74.125.224.72

log_id|001 1 0 0 1 0

log_id|002 0 1 1 0 0

log_id|003 1 0 0 0 1

Row Column Value

log_id|001 src_ip|128.0.0.1 1

log_id|001 server_ip|208.29.69.138 1

log_id|002 src_ip|192.168.1.2 1

log_id|002 server_ip|157.166.255.18 1

log_id|003 src_ip|128.0.0.1 1

log_id|003 server_ip|74.125.224.72 1

Row Column Value

server_ip|157.166.255.18 log_id|002 1

server_ip|208.29.69.138 log_id|001 1

server_ip|74.125.224.72 log_id|003 1

src_ip|128.0.0.1 log_id|001 1

src_ip|128.0.0.1 log_id|003 1

src_ip|192.168.1.2 log_id|002 1

Exploded Table

D4M stores the triple data representing both
the exploded table and its transpose

Table Triples Table Transpose Triples

23

23

Graph Construction Using D4M:
Construct Associative Arrays

Distributed
Database

Raw
Data

CSV
Files

Assoc.
Arrays

D4M Query #1
keys = T(:,’time_stamp|10/May/2011:00:00:00’,:, ...

’time_stamp|13/May/2011:23:59:59’,);

(‘log_id|001’,‘time_stamp|11/May/2011:09:52:53’,1)
(‘log_id|002’,‘time_stamp|12/May/2011:13:24:11’,1)
(‘log_id|003’,‘time_stamp|13/May/2011:11:05:12’,1)

 ...

24

24

Graph Construction Using D4M:
Construct Associative Arrays

Distributed
Database

Raw
Data

CSV
Files

Assoc.
Arrays

D4M Query #1
keys = T(:,’time_stamp|10/May/2011:00:00:00’,:, ...

’time_stamp|13/May/2011:23:59:59’,);

D4M Query #2
data = T(Row(keys), :);

(‘log_id|001’,‘server_ip|208.29.69.138’,1)
(‘log_id|001’,‘src_ip|128.0.0.1’,1)
(‘log_id|001’,‘time_stamp|11/May/2011:09:52:53’,1)

 ...

(‘log_id|002’,‘server_ip|157.166.255.18’,1)
(‘log_id|002’,‘src_ip|192.168.1.2’,1)
(‘log_id|002’,‘time_stamp|12/May/2011:13:24:11’,1)

 ...

(‘log_id|003’,‘server_ip|74.125.224.72’,1)
(‘log_id|003’,‘src_ip|128.0.0.1’,1)
(‘log_id|003’,‘time_stamp|13/May/2011:11:05:12’,1)

 ...

25

25

Graph Construction Using D4M:
Construct Associative Arrays

Raw
Data

CSV
Files

Assoc.
Arrays

D4M Query #1
keys = T(:,’time_stamp|10/May/2011:00:00:00’,:, ...

’time_stamp|13/May/2011:23:59:59’,);

D4M Query #2
data = T(Row(keys), :);

Associative Array A
=

(‘src_ip|128.0.0.1’,‘server_ip|208.29.69.138’,1)
(‘src_ip|128.0.0.1’,‘server_ip|74.125.224.72’,1)
(‘src_ip|192.168.1.2’,‘server_ip|157.166.255.18’,1)

 ...

Distributed
Database

Raw
Data

CSV
Files

Assoc.
Arrays

lgebra
G data(:,’src_ip|*’).’ * data(:,’server_ip|*’);

Distributed
Database

26

26

Graph Construction Using D4M:
Construct Associative Arrays

• Graphs can be constructed with minimal effort using D4M queries
and associative array algebra

Distributed
Database

Raw
Data

CSV
Files

Assoc.
Arrays

=

=

=

Adj(G);

D4M Query #1
keys T(:,’time_stamp|10/May/2011:00:00:00’,:, ...

’time_stamp|13/May/2011:23:59:59’,);

D4M Query #2
data T(Row(keys), :);

Associative Array Algebra
G data(:,’src_ip|*’).’ * data(:,’server_ip|*’);

27

27

Constructing Graph Representation of One
Week’s Worth of Proxy Data

Distributed
Database

Raw
Data

CSV
Files

Assoc.
Arrays

Parsing and ingestion done in parallel

Completed in less than 2 hours

Graph data generated in parallel using 7
processors (one per day)

Completed in 3 hours

using 128 processors

• Ingested ~130 million proxy log records resulting in ~4.5 billion triples

• Constructed 604,800 secondwise source IP to server IP graphs

• Constructing graphs with different vertex types could be done without
re-parsing or re-ingesting data

• Utilizing D4M could allow analysis to be run in nearly real-time
(dependent on raw data availability)

28

28

 Summary

• Big data is found across a wide range of areas

– Document analysis

– Computer network analysis

– DNA Sequencing

• Currently there is a gap in big data analysis tools for algorithm
developers

• D4M fills this gap by providing algorithm developers composable
associative arrays that admit linear algebraic manipulation

29

29

 Example Code and Assignment

• Example code

– D4Muser_share/Examples/1Intro/1Assoclntro

• Assignment
– Test your LLGrid account and D4M

– Copy the D4Muser_share/Examples to your LL Grid home directory

– Verify that you can run the above examples

• Start Matlab

• CD to your copy of the example

• Run the Examples

30

30

 MIT OpenCourseWare
https://ocw.mit.edu

RES.LL-005 Mathematics of Big Data and Machine Learning
IAP 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

31

31

https://ocw.mit.edu
https://ocw.mit.edu/terms

