
 

  

 

 

 

        
      

            

3 October 2012

Signal Processing on Databases 

Jeremy Kepner 

Lecture 0: Introduction 

This work is sponsored by the Department of the Air Force under Air Force Contract 
#FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are 
those of the authors and are not necessarily endorsed by the United States Government. 

1

1



 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

  

 

  

  

 

 

Acknowledgements 

• Nicholas Arcolano 

• Michelle Beard 

• Nadya Bliss 

• Josh Haines 

• Matthew Schmidt 

• Ben Miller 

• Benjamin O’Gwynn 

• Tamara Yu 

• Bill Arcand 

• Bill Bergeron 

• David Bestor 

• Chansup Byun 

• Matt Hubbell 

• Pete Michaleas 

• Julie Mullen 

• Andy Prout 

• Albert Reuther 

• Tony Rosa 

• Charles Yee 

• Dylan Hutchinson 

2

2



 

 

 

 Outline 

• Introduction 

• Course Outline 

• Example Implementation 

• Summary 

3

3



Example Applications of Graph Analytics 

• Cross-Mission Challenge: Detection of subtle patterns in massive 
multi-source noisy datasets 

Cyber 

• Graphs represent 
communication patterns of 
computers on a network 

• 1,000,000s – 1,000,000,000s 
network events 

• GOAL: Detect cyber attacks 
or malicious software 

Social 

• Graphs represent 
relationships between 
individuals or documents 

• 10,000s – 10,000,000s 
individual and interactions 

• GOAL: Identify hidden 
social networks 

ISR 

 

      
  

  

  
   

 
 

  
   

 

  
    

   
   

  

 
    
    

  
  

 

 

• Graphs represent entities 
and relationships detected 
through multi-INT sources 

• 1,000s – 1,000,000s tracks 
and locations 

• GOAL: Identify anomalous 
patterns of life 
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 Social

• Graphs represent 
relationships between
individuals or documents

• 10,000s – 10,000,000s 
individual and interactions

• GOAL: Identify hidden
social networks

• Graphs represent entities
and relationships detected
through multi-INT sources

• 1,000s – 1,000,000s tracks 
and locations

• GOAL: Identify anomalous 
patterns of life

ISR
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Example: Web Traffic Graph 

Traffic 
(Proxy Logs) 

Source Computer IPs 

Web Server IPs 

Graph Statistics 

• 90 minutes worth of traffic 
• 1 frame = 1 minute of traffic 

• Number of source computers: 4,063 
• Number of web servers: 16,397 

• Number of logs: 4,344,148 

Malicious Activity Statistics 

• Number of infected IPs: 1 
• Number of event logs: 16,000 
• % infected traffic: 0.37% 

• Existing tools did not detect event 
• Detection took 10 days and required 

manual log inspection 

Challenge: Activity signature is typically a weak signal 
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Big Data Challenge: Data Representation 

Challenge: Raw data source representations do not enable the efficient 
construction of graphs of interest 

• Raw data sources are rarely stored 
in a graph format 

• Data is often derived from multiple 
collection points 

Data Sources 

• Many different graphs can be built 
from a single data source 

• Constructing a single graph may 
require many sources 

• Building multi-graphs requires that 
entities be normalized 

Graph Construction 

E-mail Address Traffic 

SMTP 
Logs • E-mail From: 

• E-mail To: 
• Timestamp 

Config 
Logs 

MAC – Host 

Web 
Proxy 
Logs 

DHCP 
Logs 

IP – MAC 
IP-IP Web Traffic 

• Source IP 
• Server IP 
• Timestamp 

Host-Domain Web Traffic 

• Host 
• Domain 
• Timestamp 

 

      
  

   

   
   

  
  

 

  
 

   
  

 
  

 

   

      

  

  

   
 

 
 
  

    
 

    
 

   
 

  

  

  

 

  

  

  

DHCP 
Logs
DHCP 
Logs
DHCP 
Logs

DHCP 
Logs
DHCP 
Logs
DHCP 
Logs

DHCP 
Logs
DHCP 
Logs
DHCP 
Logs

DHCP 
Logs
DHCP 
Logs
DHCP 
Logs
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Technology Stack 

High Level Languages 

Graph Analytics 

Distributed Storage and Indexing 

High Performance Processing 

Applicability 
• Cyber, COIN, ISR, Bioinformatics 

Resiliency 
• Uncertainty in data and observation 

Scalability 
• Parallel language support 

Programmability 
• Automated performance optimization 

Portability 
• Bindings to multiple databases 

Elasticity 
• Virtual machine development 

Performance 
• Novel instruction set architectures 

Efficiency 
• Specialized circuitry and communication 
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The MIT Formula 

• Academics 

• Departments 

– EECS, Math, Physics, … 

• Mathematics 

• Algorithms 

• Software 

Theory 

+ 
• Research 

• Laboratories 

– Lincoln, CSAIL, Media, … 

• Measurement 

• Data 

• Bytes 

Experiment 

= 

• MIT is the #1 Science and Engineering University on Earth 

• A simple formula for success permeates all of MIT 

• Implementing this formula often reduces to software and bytes 

D
iscovery 
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Software and Bytes 
Live on Parallel Computers 

Memory Hierarchy 
Parallel Architecture Unit of Memory Implications 

High High 

Instruction Operands 

Blocks 

Messages 

Pages 

Registers 

Cache 

Local Memory 

Disk 

Remote Memory 

High High 

CPU 

RAM 

disk 

CPU 

RAM 

disk 

CPU 

RAM 

disk 

CPU 

RAM 

disk 

CPU 

RAM 

disk 

CPU 

RAM 

disk 

CPU 

RAM 

disk 

CPU 

RAM 

disk 

Network Switch 

B
an

dw
id

th
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nc
y 

Pr
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ab
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C
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• Nearly all modern computers are Von Neumann architectures with multi-level memory hierarchies 

• The architecture selects the algorithms and data that run well on it 
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at
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Sp
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du

p 
Software Performance 

vs. Parallel Programmer Effort 

1000 

100 

10 

1 

0.1 

Relative Effort 

0.01 0.1 1 10 100 

Assembly 

Assembly 
/DMA 

C 

C/DMA 

C/MPI 

C/MW 

C/DA 

C++ 

C++/DMA 

C++ 
/MPI 

C++/MW 

C++/DA 

Matlab 

Matlab/ 
MPI Matlab/ 

MW 

Matlab/DA 

Java 

Java/MR 

Matlab/ 
D4M 

Parallel Programming Models 

DMA = Direct Memory Access 
MPI = Message Passing 
DA = Distributed Arrays 
MW = Manager/Worker 
MR = Map/Reduce 
D4M = Dynamic Distributed 

Dimensional Data Model 

• Goal: Software that does a lot with the least effort 
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Data Use Cases 

• Data volume and data request size determine best approach 

• Always want to start with the simplest and move to the most complex 

Total Data Volume 

D
at

a 
R

eq
ue

st
 S

iz
e 

serial 
memory 

serial 
storage 

parallel 
memory 

parallel
storage / 

Serial Program Serial or Parallel Program 
+ Database 

Parallel Program 
+ Parallel Database 

Serial Program Serial or Parallel Program 
+ Files 

Parallel Program 
+ Parallel Files 
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The Fast Path 

pe
rfo

rm
an

ce
 s

pe
ed

up
 

Acceptable 

Hardware Limit 
Expert 

Novice 

100 

10 

1 

0.1 
Hours Days Weeks Months 

Programmer Effort 

• The class teaches the highest performance and lowest effort software 
techniques that are currently known 
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  Key Course Concepts 

• Bigger definition of a graph 

– How to move beyond random, undirected, unweighted graphs to 
power-law, directed, multi-hyper graphs 

• Bigger definition of linear algebra 

– How to move beyond real numbers to doing math with words and 
strings 

• Bigger definition of processing 

– How to move beyond map/reduce to distributed arrays programming 

• These abstract concepts are the foundation for high performance signal 
processing on large unstructured data sets 
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 Course Outline 

• Introduction 
– Review course goals and structure 

• Using Associative Arrays 
– Schemas, incidence matrices, and directed multi-hyper graphs 

• Group Theory 
– Extending linear algebra to words using fuzzy algebra 

• Entity Analysis in Unstructured Data 
– Reading and parsing unstructured data 

• Analysis of Structured Data 
– Graph traversal queries 

• Power Law Data 
– Models and fitting 

• Cross Correlation 
– Sequence data, computing degree distributions, and finding matches 

• Parallel Processing 
– Kronecker graphs, parallel data generation and computation 

• Databases 
– Relational, triple store, and exploded schemas 
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Constructing Graph Representations
of Raw Data Source 

Raw 
Data 

Vertex 
and 

Edge 
Lists 

(2) Convert edge lists into 
adjacency matrices 

Developed Once 

(1) Parse edge and vertex 

Developed Once Per Data Source Per Graph 

information from raw data 

 

     
  

 
  

 
 

 

 

 
  

 

  
   

    

    
   

     
     

• Raw data sources can contain information about multiple types of 
relations between entities 

• The process of constructing a graph representation is specific to both 
the data source and the relationships represented by the graph 

• The development time of parsing and graph construction algorithms 
can overwhelm the runtime of the algorithm 
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Graph Construction Using D4M 

• D4M provides needed flexibility in the construction of large-scale, 
dynamic graphs at different resolutions and scopes 

Distributed 
Database 

Raw 
Data 

CSV 
Files 

Assoc. 
Arrays 

Developed Once Per Data Source 

(4) Convert 

D4M 

(3) Construct associative 

Developed Once Per Graph 

(2) Explode schema and store 

D4M 

(1) Parse fields from raw data 
associative arrays 

into adjacency matrices 

arrays using D4M queries in database 
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Graph Construction Using D4M:
Parsing Raw Data Into Dense Tables 

Distributed 
Database 

Raw 
Data 

CSV 
Files 

Assoc. 
Arrays 

Proxy Logs 

128.0.0.1 208.29.69.138 "-" [10/May/2011:09:52:53] "GET http://www.thedailybeast.com/ HTTP/1.1“ 200 

1024 8192 "http://www.theatlantic.com/" "Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.2.13) 

Gecko/20101209 CentOS/3.6-2.el5.centos Firefox/3.6.13" "bl“ - "text/html" "MITLAB“ 0.523 "-" 

Neutral TCP_MISS 

192.168.1.1 157.166.255.18 “-” [12/May/2011:13:24:11] "GET http://www.cnn.com/ HTTP/1.1“ 335 256 

10296 "-" "Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.2.13) Gecko/20101209 CentOS/3.6-

2.e15.centos Firefox/3.6.13" “bu" - "text/html" “MITLAB" 0.784 "-“ Neutral TCP_MISS 
... 

log_id src_ip server_ip time_stamp req_line ... 
001 128.0.0.1 208.29.69.138 10/May/2011:09:52:53 GET http://www.thedailybeast.com/ HTTP/1.1 … 

002 192.168.1.2 157.166.255.18 12/May/2011:13:24:11 GET http://www.cnn.com/ HTTP/1.1 … 

003 128.0.0.1 74.125.224.72 13/May/2011:11:05:12 GET http://www.google.com/ HTTP/1.1 … 

Dense Table 
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Graph Construction Using D4M:
Explode Schema 

Distributed 
Database 

Raw 
Data 

CSV 
Files 

Assoc. 
Arrays 

log_id src_ip server_ip 

001 128.0.0.1 208.29.69.138 

002 192.168.1.2 157.166.255.18 

003 128.0.0.1 74.125.224.72 

Dense Table 

src_ip|128.0.0.1 src_ip|192.168.1.2 server_ip|157.166.255.18 server_ip|208.29.69.138 server_ip|74.125.224.72 

log_id|001 1 0 0 1 0 

log_id|002 0 1 1 0 0 

log_id|003 1 0 0 0 1 

Exploded Table 

Use as row 
indices 

Create columns for 
each unique 

type/value pair 
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Graph Construction Using D4M:
Storing Exploded Data as Triples 

Distributed 
Database 

Raw 
Data 

CSV 
Files 

Assoc. 
Arrays 

src_ip|128.0.0.1 src_ip|192.168.1.2 server_ip|157.166.255.18 server_ip|208.29.69.138 server_ip|74.125.224.72 

log_id|001 1 0 0 1 0 

log_id|002 0 1 1 0 0 

log_id|003 1 0 0 0 1 

Row Column Value 

log_id|001 src_ip|128.0.0.1 1 

log_id|001 server_ip|208.29.69.138 1 

log_id|002 src_ip|192.168.1.2 1 

log_id|002 server_ip|157.166.255.18 1 

log_id|003 src_ip|128.0.0.1 1 

log_id|003 server_ip|74.125.224.72 1 

Row Column Value 

server_ip|157.166.255.18 log_id|002 1 

server_ip|208.29.69.138 log_id|001 1 

server_ip|74.125.224.72 log_id|003 1 

src_ip|128.0.0.1 log_id|001 1 

src_ip|128.0.0.1 log_id|003 1 

src_ip|192.168.1.2 log_id|002 1 

Exploded Table 

D4M stores the triple data representing both 
the exploded table and its transpose 

Table Triples Table Transpose Triples 

 

 
  

 

 
 

 
  

     

      

      

      

 

  
  

  

   
   
   
   
   
   
   

  
  

   
   

   
   

   

23

23



 

 
   

 

 
 

 
  

  
  

            

 

 

 

 

 

Graph Construction Using D4M:
Construct Associative Arrays 

Distributed 
Database 

Raw 
Data 

CSV 
Files 

Assoc. 
Arrays 

D4M Query #1 
keys = T(:,’time_stamp|10/May/2011:00:00:00’,:, ... 

’time_stamp|13/May/2011:23:59:59’,); 

(‘log_id|001’,‘time_stamp|11/May/2011:09:52:53’,1) 
(‘log_id|002’,‘time_stamp|12/May/2011:13:24:11’,1) 
(‘log_id|003’,‘time_stamp|13/May/2011:11:05:12’,1)

  ... 
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Graph Construction Using D4M:
Construct Associative Arrays 

Distributed 
Database 

Raw 
Data 

CSV 
Files 

Assoc. 
Arrays 

D4M Query #1 
keys = T(:,’time_stamp|10/May/2011:00:00:00’,:, ... 

’time_stamp|13/May/2011:23:59:59’,); 

D4M Query #2 
data = T(Row(keys), :); 

(‘log_id|001’,‘server_ip|208.29.69.138’,1) 
(‘log_id|001’,‘src_ip|128.0.0.1’,1) 
(‘log_id|001’,‘time_stamp|11/May/2011:09:52:53’,1)

  ... 

(‘log_id|002’,‘server_ip|157.166.255.18’,1) 
(‘log_id|002’,‘src_ip|192.168.1.2’,1) 
(‘log_id|002’,‘time_stamp|12/May/2011:13:24:11’,1)

  ... 

(‘log_id|003’,‘server_ip|74.125.224.72’,1) 
(‘log_id|003’,‘src_ip|128.0.0.1’,1) 
(‘log_id|003’,‘time_stamp|13/May/2011:11:05:12’,1)

  ... 
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Graph Construction Using D4M:
Construct Associative Arrays 

Raw
Data

CSV
Files

Assoc.
Arrays

D4M Query #1 
keys = T(:,’time_stamp|10/May/2011:00:00:00’,:, ... 

’time_stamp|13/May/2011:23:59:59’,); 

D4M Query #2 
data = T(Row(keys), :); 

Associative Array A
= 

(‘src_ip|128.0.0.1’,‘server_ip|208.29.69.138’,1) 
(‘src_ip|128.0.0.1’,‘server_ip|74.125.224.72’,1) 
(‘src_ip|192.168.1.2’,‘server_ip|157.166.255.18’,1)

 ... 

Distributed 
Database 

Raw 
Data 

CSV 
Files 

Assoc. 
Arrays 

lgebra 
G data(:,’src_ip|*’).’ * data(:,’server_ip|*’); 

 

 
   

 

 
 

 
  

  
  

            

  
  

  
 

 

 

 

 

 

 

 
 

 
  

Distributed 
Database
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Graph Construction Using D4M:
Construct Associative Arrays 

• Graphs can be constructed with minimal effort using D4M queries 
and associative array algebra 

Distributed 
Database 

Raw 
Data 

CSV 
Files 

Assoc. 
Arrays 

= 

= 

= 

Adj(G); 

D4M Query #1 
keys T(:,’time_stamp|10/May/2011:00:00:00’,:, ... 

’time_stamp|13/May/2011:23:59:59’,); 

D4M Query #2 
data T(Row(keys), :); 

Associative Array Algebra 
G data(:,’src_ip|*’).’ * data(:,’server_ip|*’); 
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Constructing Graph Representation of One 
Week’s Worth of Proxy Data 

Distributed 
Database 

Raw 
Data 

CSV 
Files 

Assoc. 
Arrays 

Parsing and ingestion done in parallel 

Completed in less than 2 hours 

Graph data generated in parallel using 7 
processors (one per day) 

Completed in 3 hours 

using 128 processors 

 

        
   

  

 

 
 

 
  

     
  

   

     
  

 

        
      
     

   

• Ingested ~130 million proxy log records resulting in ~4.5 billion triples 

• Constructed 604,800 secondwise source IP to server IP graphs 

• Constructing graphs with different vertex types could be done without 
re-parsing or re-ingesting data 

• Utilizing D4M could allow analysis to be run in nearly real-time 
(dependent on raw data availability) 
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 Summary 

• Big data is found across a wide range of areas 

– Document analysis 

– Computer network analysis 

– DNA Sequencing 

• Currently there is a gap in big data analysis tools for algorithm 
developers 

• D4M fills this gap by providing algorithm developers composable 
associative arrays that admit linear algebraic manipulation 

29

29



 

 
 

 

 
   

   

  
 

    
  

 Example Code and Assignment 

• Example code 

– D4Muser_share/Examples/1Intro/1Assoclntro 

• Assignment 
– Test your LLGrid account and D4M 

– Copy the D4Muser_share/Examples to your LL Grid home directory 

– Verify that you can run the above examples 

• Start Matlab 

• CD to your copy of the example 

• Run the Examples 
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