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Goals 

• Develop a background model for graphs based on  “perfect” 
power law 
 

• Examine effects of sampling such a power law 
 

• Develop techniques for comparing real data with a power law 
model 
 

• Use power law model to measure deviations from background 
in real data 
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Detection Theory 

DETECTION OF SIGNAL IN NOISE DETECTION OF SUBGRAPHS IN GRAPHS 

NOISE 

SIGNAL 

N-D SPACE 

THRESHOLD 

ASSUMPTIONS 
• Background (noise) statistics 
• Foreground (signal) statistics 
• Foreground/background separation 
• Model ≈ reality  

NOISE SIGNAL 

Can we construct a background model based on power law degree distribution? 

H0 H1 

Example background model: 
Powerlaw graph 

Example subgraph of interest:  
Fully connected (complete) 
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“Perfect” Power Law Matrix Definition 

Vertex In Degree 
Distribution 

• Graph represented as a rectangular sparse matrix 
– Can be undirected, multi-edged, self-loops, disconnected, hyper edges, …  

• Out/in degree distributions are independent first order statistics 
– Only constraint: S n(dout) dout = S n(din) din = M 
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Power Law Distribution Construction 

• Simple algorithm naturally generates perfect power law 
• Smooth transition from integer to logarithmic bins 
• “Poor man’s” slope estimator:  a = log(n1)/log(dmax) 

n1 

 

 

1 

1  2  3  …      8  16  32  …         dmax 
integer           logarithmic            

n(di) = n1/di
a 

• Perfect power law matlab code 
 

function [di ni] = PPL(alpha,dmax,Nd) 
logdi = (0:Nd) * log(dmax) / Nd; 
di    = unique(round(exp(logdi))); 
logni = alpha * (log(dmax) - log(di)); 
ni    = round(exp(logni)); 

 
• Parameters 

– alpha = slope 
– dmax  = largest degree vertex 
– Nd    = number of bins (before unique) 
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Power Law Edge Construction 

• Algorithm generates list of vertices corresponding to any distribution 
• All other aspects of graph can be set based on desired properties 

• Power law vertex list matlab code 
 
function v = PowerLawEdges(di,ni); 
A1 = sparse(1:numel(di),ni,di); 
A2 = fliplr(cumsum(fliplr(A1),2)); 
[tmp tmp d] = find(A2); 
A3 = sparse(1:numel(d),d,1); 
A4 = fliplr(cumsum(fliplr(A3),2)); 
[v tmp tmp] = find(A4); 

 
• Degree distribution independent of 

– Vertex labels 
– Edge pairing 
– Edge order 

random vertex labels 
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Fitting a, N, M 

• Power law model works for any 
a > 0,    dmax > 1,     Nd > 1  

 
• Desire distribution that fits 

a,    N,    M  
 

• Can invert formulas 
– N = Si n(di) 
– M = Si n(di) di 
 
 

• Highly non-linear; requires a combination of 
– Exhaustive search, simulated annealing, and Broyden’s algorithm 

• Given a, N, M can solve for Nd and dmax 

• Not all combinations of a, N, M are consistent with power law 
 

Allowed N and M for a = 1.3  

M  

N 

ï
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Example: Halloween Candy 

Distribution 
parameters 
• M     = 77 
• N     = 19 
• M/N = 4.1 
• n1    = 8 
• dmax = 15 
•  a     = 0.77 
Fit parameters 
• M     = 77 
• N     = 21 
• M/N = 3.7 

Procedure 
• Estimate parameters from data 
• Determine if viable power law fit 
• Rebin measured to power law and compare 

© source unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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• Reuter’s Data 
 

• Summary 

• Graph construction 
• Graphs from E’ * E 
• Edge ordering and 

densification 
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Graph Construction Effects 

• Generate a perfect power law 
NxN randomize adjacency 
matrix A  
–  a = 1.3, dmax = 1000, Nd = 50 
–  N = 18K, M = 84K 

 
• Make undirected, unweighted, 

with no self-loops 
   A = triu(A + A’); 
   A = double(logical(A)); 
   A = A - diag(diag(A)); 

 
• Graph theory best for undirected, unweighted graphs with no self-loops 
• Often “clean up” real data to apply graph theory results 
• Process mimics “bent broom” distribution seen in real data sets 
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co

un
t 



D4M- 12 

Power Law Recovery 

Procedure 
• Compute a, N, M from 

measured 
• Fit perfect power law to 

these parameters 
• Rebin measured data using 

perfect power law degree 
bins 
 

• Perfect power law fit to “cleaned up” graph can recover much of the 
shape of the original distribution 
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Correlation Construction Effects 

• Generate a perfect power law 
NxN randomize incidence 
matrix E  
–  a = 1.3, dmax = 1000, Nd = 50 
–  N = 18K, M = 84K 
 

• Make unweighted and use to 
form correlation matrix A with 
no self-loops 

 
   E = double(logical(E)); 
   A = triu(E’ * E); 
   A = A - diag(diag(A)); 

 

• Correlation graph construction from incidence matrix results in a “bent 
broom” distribution that strongly resembles a power law 
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Power Law Lost 

Procedure 
• Compute a, N, M from 

measured 
• Fit perfect power law to 

these parameters 
• Rebin measured data using 

perfect power law degree 
bins 
 

• Perfect power law fit to correlation shows non-power law shape 
• Reveals “witches nose” distribution 
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Power Law Preserved 

• In degree is power law 
a = 1.3, dmax = 1000, Nd = 50 

– N = 18K, M = 84K 

• Out degree is constant 
– N = 16K, M = 84K 
– Edges/row = 5 (exactly) 

 
• Make unweighted and use to 

form correlation matrix A with 
no self-loops 

• Uniform distribution on correlated dimension preserves power law 
shape 
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Edge Ordering: Densification 

• Compute M/N cumulatively 
and piecewise for 2 
orderings 
– Linear 
– Random 
 

• By definition M/N goes from 
1 to infinity for finite N 
 

• Elimination of multi-edges 
reduces M and causes M/N 
to grow more slowly 

• “Densification” is the observation that M/N increases with N 
• Densification is a natural byproduct of randomly drawing edges from a 

power law distribution 
• Linear ordering has constant M/N 

Linear 

random  
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Edge Ordering: Power Law Exponent (a) 

• Compute a cumulatively 
and piecewise for 2 
orderings 
– Linear 
– Random 

 
• Edge ordering and sampling 

have large effect on the 
power law exponent 

• Power law exponent is fundamental to distribution 
• Strongly dependent on edge ordering and sample size 

random 

linear 

random 
cumulative 

linear 
cumulative 
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Sub-Sampling Challenge 

• Anomaly detection requires good estimates of background 
 

• Traversing entire data sets to compute background counts 
is increasingly prohibitive 
– Can be done at ingest, but often is not 

 
• Can background be accurately estimated from a sub-sample 

of the entire data set? 
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Sampling a Power Law 

• Generate power law 
• Select fraction of edges 

Whole distribution 

1/40 sample 
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Linear Degree Estimate 

• Divide measured degree by fraction 
• Accurate for high degree 
• Overestimates low degree 
• Can we do better? 

Whole distribution 

Linear estimate 
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Non-Linear Degree Estimate 

• Assume power law input 
• Create non-linear estimate 
• Matches median degree 

Whole distribution 

Non-Linear estimate 
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Sub-Sampling Formula 

• f = fraction of total edges sampled 
• n1 = # of vertices of degree 1 
• dmax = maximum degree 
• Allowed slope:        ln(n1)/ln(dmax/f) < a < ln(n1)/ln(dmax) 

 
• Cumulative distribution 
 P(a,d) = (f1-a dmax

a / n1) Si<d i1-a e-fi    
 

• Find a* such that P(a*,∞) = 1 
• Find d50% such that P(a*,d50%) = ½ 
• Compute  K = 1/(1 + ln(d50%)/ln(f)) 

 
• Non-linear estimate of true degree of vertex v from sample d(v) 
 d(v) = d(v) / f1-1/(K d(v)) 
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• Measured 
• Expected 
• Time Evolution 
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Joint Distribution Definitions 

• Label each vertex by degree 
 

• Count number of edges from dout to din: n(dout,din) 

 
• Rebin based on perfect power law model 

 
• Can compare measured vs. expected 

• Power law model allows precise quantitative comparison of 
observed data with a model 
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Measured Joint Distribution 

• Measured distribution is highly sparse 
• Rebinning based on power law fit degree bins makes most bins not empty 

din din 

d o
ut

 

d o
ut

 

log10(n) log10(n) Measured Measured Rebin 
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Expected Joint Distribution 

• Using n(dout) and n(din) can compute expected n(dout,din) = n(dout) x n(din)/M 

din din 

d o
ut

 

d o
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log10(n) log10(n) Expected Expected Rebin 
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Measured/Expected Joint Distribution 

• Ratio of measured to expected highlights surpluses    , deficits   , typical edges 
• Binning reduces Poisson fluctuations and allows for more meaningful selection 

din din 

d o
ut

 

d o
ut

 

log10(n) log10(n) Measured/Expected Measured/Expected Rebin 
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Measured/Expected Joint Distribution 

• Ratio of measured to expected highlights surpluses    , deficits   , typical edges 
• Binning reduces Poisson fluctuations and allows for more meaningful selection 

Measured/Expected Measured/Expected Rebin 
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Selected Edges 

• Ratio of measured to expected highlights surpluses    , deficits   , typical edges 
• Can use to select actual edges that correspond to fluctuations 

In Vertex 
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Measured/Expected Random Edge Order 

• Ratio of measured to expected highlights unusual correlations 
din 

d o
ut

 

log10(n) Measured Rebin/Expected Rebin 
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Measured/Expected Linear Edge Order 

• Ratio of measured to expected highlights unusual correlations 
din 

d o
ut

 

log10(n) Measured Rebin/Expected Rebin 
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Reuter’s Incidence Matrix 

• Entities extracted from 
Reuter’s Corpus 

• E(i,j) = # times entity 
appeared in document 
 

• Ndoc   = 797677 
• Nent   =  47576 
• M      = 6132286 

 
• Four entity classes with 

different statistics 
– LOCATION 
– ORGANZATION 
– PERSON 
– TIME 

• Fit power law model to each entity class 

LOCATION ORGANIZTION PERSON TIME 
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E(:,LOCATION) Degree Distribution 

M N M/N a Mfit Nfit Mfit/Nfit 

Document 4694260 796414 5.89 1.70 4699280 811364 5.79 

Entity 4694260 1786 2628 0.47 4696734 3680 1276 
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E(:,ORGANIZATION) Degree Distribution 

M N M/N a Mfit Nfit Mfit/Nfit 

Document 192390 69919 2.75 2.22 185800 85835 2.16 

Entity 192390 141 1364 0.32 191943 205 936 
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E(:,PERSON) Degree Distribution 

M N M/N a Mfit Nfit Mfit/Nfit 

Document 299333 170069 1.76 1.92 302478 170066 1.78 

Entity 299333 37191 8.05 1.21 299748 37449 8.00 
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E(:,TIME) Degree Distribution 

M N M/N a Mfit Nfit Mfit/Nfit 

Document 946299 797677 1.19 2.37 944653 797734 1.18 

Entity 946299 8444 112 0.83 947711 19848 47.7 
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E(:,PERSON)t x E(:,PERSON) 

• Perfect power law fit to correlation shows non-power law shape 
• Reveals “witches nose” distribution 

Procedure 
• Make unweighted and 

use to form correlation 
matrix A with no self-
loops 

 
   E = double(logical(E)); 

   A = triu(E’ * E); 

   A = A - diag(diag(A)); 
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E(:,TIME)t x E(:,TIME) 

• Perfect power law fit to correlation shows non-power law shape 
• Reveals “witches nose” distribution 

Procedure 
• Make unweighted and 

use to form correlation 
matrix A with no self-
loops 

 
   E = double(logical(E)); 

   A = triu(E’ * E); 

   A = A - diag(diag(A)); 
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Document Densification 

• Constant M/N consistent with sequential ordering of documents 
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Entity Densification 

• Increasing M/N consistent with random ordering of entities 
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Document Power Law Exponent (a) 

• Increasing a consistent with sequential ordering of documents 
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Entity Power Law Exponent (a) 

• Decreasing a consistent with random ordering of entities 
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E(:,LOCATION) Joint Distribution 
log10(n) log10(n) log10(n) 

• Ratio of measured to expected highlights surpluses    , deficits   , typical edges 
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E(:,ORGANIZATION) Joint Distribution 
log10(n) log10(n) log10(n) 

• Ratio of measured to expected highlights surpluses    , deficits   , typical edges 
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E(:,PERSON) Joint Distribution 
log10(n) log10(n) log10(n) 

• Ratio of measured to expected highlights surpluses    , deficits   , typical edges 
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E(:,TIME) Joint Distribution 
log10(n) log10(n) log10(n) 

• Ratio of measured to expected highlights surpluses    , deficits   , typical edges 
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Selected Edges E(:,LOCATION) 

• Highlights anomalous edges 
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Selected Edges E(:,PERSON) 

• Highlights anomalous edges 
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Summary 

• Develop a background model for graphs based on  “perfect” 
power law 
– Can be done via simple heuristic 
– Reproduces much of observed phenomena 

• Examine effects of sampling such a power law 
– Lossy, non-linear transformation of graph construction mirrors 

many observed phenomena 

• Traditional sampling approaches significantly overestimate 
the probability of low degree vertices 
– Assuming a power law distribution it is possible to construct a 

simple non-linear estimate that is more accurate 
• Develop techniques for comparing real data with a power 

law model 
– Can fit perfect power-law to observed data 
– Provided binning for statistical tests 

• Use power law model to measure deviations from 
background in real data 
– Can find typical, surplus and deficit edges 
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Example Code & Assignment 

• Example Code 
– d4m_api/examples/2Apps/3PerfectPowerLaw 

 

• Assignment 4 
– Compute the degree distributions of cross-correlations you found in 

Assignment 2 
– Explain the meaning of each degree distribution 
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