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Introduction
When to Use this Video

In Soph 301, in recitation, before Lecture 4: 
Applications to Di&erential Equations 
Prior knowledge: drawing free body force 
diagrams, applying Newton’s second law in 
polar coordinates, and how to write a Taylor 
series expansion of a function about a point.

Learning Objectives

O

After watching this video students will be able to: NT
R

I

Understand that the physical laws governing a system’s properties can be modeled using 
di&erential equations.
Explain that the solution to a di&erential equation is a family of functions.
Recognize that specifying initial conditions determines a particular solution function to a 
di&erential equation.

Motivation
Students have a di'cult time understanding that solutions to di&erential equations are 
functions, and not points, or values of a function at a point.
Textbooks tend not to fully explain why n initial conditions must be speci(ed to determine 
a solution for a nth order di&erential equation. In this video, we make a concrete argument 
tied to the Taylor Series, which students are familiar with from Calculus.

Student Experience
It is highly recommended that the video is paused when prompted so that students are able to attempt the 
activities on their own and then check their solutions against the video. 
During the video, students will:

Describe the important forces acting on a swinging pendulum.
Discuss whether or not di&erential equations have unique solutions.
Predict whether two pendulums swinging from the same initial position will have the same 
behavior.
Determine how many initial conditions are required to specify a solution for a 3rd order 
di&erential equation.

Key Information
Duration: 18:18
Narrator: Peter Dourmashkin, Ph.D.
Materials Needed:
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Video Highlights
*is table outlines a collection of activities and important ideas from the video.

O
NT

R
I

Time Feature Comments
0:05
1:19
2:04

2:28
3:59

Walter Lewin on a pendulum
Prerequisites and Learning objectives
Chapter 1: Describing Pendulum 
Motion
Activity
Simplifying assumptions

*e damped pendulum is modeled as an ordinary 
di&erential equation using polar coordinates.
Brainstorm a list of pendulum properties.
Assumptions used to simplify the model are 
described.

4:48 Activity Identify relevant forces acting on the pendulum 
bob and their direction.

11:26

12:17

13:38

Chapter 2: Solution Functions

Activity

Activity

Solutions to the model are discussed.  Solutions 
to ODEs are in(nite families of functions that 
depend on initial conditions.  Our model requires 
that we specify two initial conditions.
Discussion question: is there a unique solution to 
our di&erenitial equation?
Determine the di&erence between two solutions, 
both with the same initial position, but di&erent 
initial velocities.

14:50

16:50

17:03

Taylor Series

Activity

To Review

Proof of the need for two initial conditions is 
shown via use of the Taylor Series.
How many intitial conditions would be required 
to specify the solution to a 3rd order, ordinary, 
di&erential equation?

Video Summary
*is video leads students through modeling the regular, non-linear pendulum with a di&erential 
equation. We explore why solutions to a di&erential equation are an in(nite family of functions. 
We show that to determine a speci(c solution to this second order di&erential equation, two initial 
conditions must be speci(ed. Proof of the need for two initial conditions is shown via use of the 
Taylor Series.
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Soph 301 Materials
Pre-Video Materials
When appropriate, this guide is accompanied by additional materials to aid in the delivery of some of the 
following activities and discussions.
*e (rst three problems are concept questions developed by MIT for 8.01 in order to test student 
understanding of centripetal motion.

1.  Centripetal Acceleration (Appendix A1)  
 
As an object speeds up along a circular path in a counterclockwise direction, shown below, its 
accleration points: 
 

(a) toward the center of the circular path
(b) in a direction tangent to the circular path

 30
1

(c) outward H
OP(d) none of the above S

 

2.  Centripetal Acceleration (Appendix A2)  
 
An object moves counterclockwise along a circular path shown below. As it moves along this 
path, its acceleration vector continuously points towards the point S.  
 

(a)  *e object speeds up at P, Q, and R.
(b) *e object slows downa at P, Q, and R.
(c) *e object speeds up at P and slows down at R.
(d) *e object slows down at P and speeds up at R.
(e)  *e object speeds up at Q.
(f )  *e object slows down at R.
(g) No object can execute such a motion.  
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3.  Centripetal Acceleration: Pendulum (Appendix A3)   
 
A pendulum bob swings down and is moving fast at the lowest point in its swing.  T is the 
tension in the string, and W is the gravitational force exerted on the pendulum bob.  Which 
free-body diagram best represents the forces exerted on the pendulum bob at the lowest point?  
*e lengths of the arrows represent the relative magnitude of the forces. 

(a) T=W 
 
 
 

(b) T=W 
 
 
 

(c) T<W 
  30

1

 H

 OPS

(d) T>W 
 
 
 

(e) T>W 
 

4.  Which of the following are true about the Taylor series.
(a) *e Taylor Series write a function as an in(nite sum, you can replace the function with this 

sum anytime and anywhere.
(b) *e Taylor Seires is an in(nite sum that tells you the value of a function at a point based on 

the value of all of the derivatives of that function at some nearby point.
(c) *e Taylor Series is an in(nite sum that tells you the value of a function on some interval 

based on the value of all of the derivatives of that function at some nearby point.
(d) By considering the (rst 3 terms of a Taylor Series for a function, you obtain a polynomial 

whose value, (rst, and second derivatives all agree with the function at one point.
(e) By considering the (rst 3 terms of a Taylor Series for a function, you obtain a polynomial 

whose value, (rst, and second derivatives all agree with the function on some small interval. 
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Post-Video Materials

1.   We know that the motion of a pendulum is constrained such that the velocity is always 
tangent to the circle of motion. Writing the velocity in polar coordinates, this means that the 
velocity always points in the tangential direction, with no velocity component pointing in the 
radial direction.  However, we know that the accleration contains both radial and tangential 
components. Where do they come from? In particular, explain why the unit vector pointing in 
the tangential direction as a time derivative that points in the radial direction. 

2. Find a di&erential equation that describes the tension in the pendulum. How is this 
di&erential equation related the the equation we discussed in the video?   
 
 

3.  In the video, we show that we need 2 pieces of initial data to (nd a particular solution to 
a second order ODE.  We chose the initial (angular) position, and the initial angular velocity.   30

1

*e following discussion questions are intended to have students think more about what is H

necessary. OPS

(a)  Does it matter what two initial conditions we start with?  For example, can we determine a 
solution from an initial angular velocity and an intitial angular acceleration? Why or Why 
not?

(b)  What could happen if we started with 3 pieces of information?  *ink about how this is 
similar or dissimilar to an over-determined linear system. 
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Additional Resources
Going Further
Di&erential equations are the language that describes the governing rules that constrain the physical world 
around us. As such, a basic understanding of di&erential equations is important for anyone interested in 
pursuing basic scienti(c knowledge.
*is video is intended to help students explore the basic principles and properties of Ordinary Di&erential 
Equations. Solution methods for di&erential equations will be explored in Soph 301, and numerical 
methods for solving di&erential equations will be explored in Soph 302. *is video provides a nice starting 
point for both courses. 

References
*e following educational articles describe student di'culties, student misconceptions, and approaches to 
teaching di&erential equations.  *ese resources may provide inspiration in creating your own materials.  

Arslan, S. (2010). Do students really understand what a di&erential equation is? Int. J. of 
Math. Ed. in Sci. Technol., 41(7), 873–888.
Boyce, W. E. (1994).  New directions in elementary di&erential equations. !e Coll. Math. J., 
25(5), 364–371.
Davis, P. (1994).  Asking good questions about di&erential equations.  !e Coll. Math. J., 
25(5), 394–400.
Hubbard, J. H. (1994).  What it means to understand a di&erential equation.  !e Coll. 
Math. J., 25(5), 372–384. S

CE

Pennell, S., Avitabile, P., & White, J. (2009). An engineering-oriented approach to the UR

introductory di&erential equations course. PRIMUS, 19(1), 88–99. SOE

*e following article models the simple and non-linear pendulum, and suggests a student activity that R

allow students to explore the e&ects of simplifying assumptions on the model, and compares model to 
experimental data collected by the student. 

Reid, T. S. & King, S. C., (2009). Pendulum motion and di&erential equations. PRIMUS, 
19(2), 205–217.

*ese video references discuss pendulum behavior, the (rst from a physics perspective, the second from a 
mathematical perspective.

Lewin, W., 8.01 Classical Mechanics, Fall 1999. (Massachusetts Institute of Technology: 
MIT OpenCouseWare), http://ocw.mit.edu (Accessed November 27, 2012). License: 
Creative Commons BY-NC-SA  
  -Lecture 10: Hook’s Law and Simple Harmonic Motion
Mattuck, A., 18.03 Di"erential Equationss, Spring 2003. (Massachusetts Institute of 
Technology: MIT OpenCouseWare), http://ocw.mit.edu (Accessed November 27, 2012). 
License: Creative Commons BY-NC-SA  
  -Lectures 31: Non-linear Autonomous Systems
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