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Transcript — Rigid Body Kinematics

Here's a well-thrown disk. But have you ever thrown one badly, so that as it spins, there’s a wobble?
This wobble rotates with a different frequency than the disk itself spins.

In this video, we’re going to describe mathematically the motion of all of the points on this badly thrown
disk.

This video is part of the Linearity Video Series. Many complex systems are modeled or approximated
linearly because of the mathematical advantages.

Hi, my name is Dan Frey, and | am a professor of Engineering Systems and Mechanical Engineering at
MIT. And | use rigid body kinematics myself when designing radio-controlled aircraft.

Before watching this video, you should be familiar with eigenvalues and eigenvectors,
the standard basis, el, e2, e3 of R3,

and orthogonal matrices.

After watching this video, you will be able to: identify rotation matrices; decompose the motion of the
badly thrown disk into translational and rotational components; and write the rotational motion of the
disk as a product of rotation matrices.

Chapter 1: Kinematics

Our goal is to describe the motion of the disk. The disk is a rigid body; it doesn’t stretch, bend, or
deform in any way when it is thrown.

In this video, we’re not interested in why the disk moves the way it does --- that is, we’re not trying to
describe torques and forces that govern the motion. We simply want to describe the motion
mathematically. This is a job for rigid body kinematics.

We're going to describe the motion by decomposing it into translational and rotational components.
We'll start with the mathematics of rotation matrices.

This will allow us to build up to a description of the wobbly disk.

Finally, we’ll complete the description of the wobbly disk by adding in the translational component.

Chapter 2: 3-Dimensional Rotation Matrices

Let’s start with some linear algebra.



A rotation is a mapping that takes any vector in R3 to some other vector in R3 via rotation about some
axis by some angle.

Rotations don’t change the length of a vector. So, if you scale a vector and then rotate it, you get the
same thing as if you first rotate it, and then scale the vector.

Also, if you take two vectors, sum them and then rotate the sum, this is equal to vector you would get if
you first rotate both vectors and then add them.

These two properties together mean that Rotations act linearly on vectors.

And by definition, linear operations can be represented by matrices.

But what does a rotation matrix look like?

We can learn a lot about a matrix by examining its eigenvalues and eigenvectors.
Recall that a vector v is an eigenvector of a matrix

if it is sent to a scalar multiple of itself when acted upon by the matrix.

That scalar is the eigenvalue.

Consider a rotation of 60 degrees about the axis defined by the vector el+e2. Pause the video here and
determine one eigenvalue and eigenvector.

By the definition of an eigenvector, the vector el+e2, which points along the axis of rotation, is an
eigenvector with eigenvalue one. This is because this vector is UNCHANGED by the rotation matrix.

Suppose you have a rotation matrix such that el and e2 are both eigenvectors with eigenvalue 1.

What would this mean about the rotation? Pause the video and think about this.

The entire xy-plane will be unchanged by this rotation. This is only possible if the matrix is the identity
matrix! This is the null rotation... nothing happens!

What are the eigenvalues and eigenvectors of a 180-degree rotation about the z-axis? Pause the video.
This rotation matrix has one eigenvalue of 1, corresponding to the vector e3, which points along the axis
of rotation.

But it has more eigenvectors: any vector in the xy-plane is sent to its negative by the rotation, so any
vector in the xy-plane is an eigenvector with eigenvalue -1.

Now let’s consider a rotation by some angle theta (that is not an integer multiple of pi) clockwise about
the z-axis.

Write a matrix that represents such a rotation.
Compute the eigenvalues of this matrix,



and use the definition of an eigenvector to explain why this makes sense. Pause the video.
You should have found 1 real eigenvalue equal to 1, and two complex conjugate eigenvalues.

The real eigenvalue corresponds to the eigenvector e3, which is sent to itself by the rotation, hence the
eigenvalue of 1.

The fact that the other two eigenvalues are complex means that no other vector is sent to a REAL scalar
multiple of itself.

This makes sense geometrically because NO other vector points in the same direction it started in after
being rotated.
Now, how do we describe any general rotation about an arbitrary axis?

Well, a matrix is completely defined by how it acts on basis vectors.

Since a rotation doesn’t change the lengths of vectors or the angles BETWEEN two vectors, a rotated
basis will also be a basis for R3!

This tells us that any rotation matrix can be described as an orthonormal matrix.

The columns are the vectors each standard basis vector is sent to.

Is it true that ALL orthonormal matrices rotate vectors? Pause the video.
Nope, here’s an orthonormal matrix that’s not a rotation; it’s a reflection.

The rule is that only an orthonormal matrix whose determinant is positive 1 is a rotation.

Chapter 3: Time dependent rotations

But let’s get back to thinking about rigid body KINEMATICS. Remember, we want to describe the motion
of the disk. We've talked about rotation matrices, but we’ve left out a very important component: time!
How will we describe time dependent rotation?

That’s right, time dependent matrices.
Let’s start by modeling a simple motion: the rotation of a disk as it spins clockwise about the positive z-
axis.

We know how to write a matrix that describes rotation by an angle theta about the z-axis.

How would you make this rotation time dependent? Pause the video and discuss.



The obvious choice here is to simply make theta a function of time!
But how does it depend on time?
To write an explicit function, we need to know the rate, omega,

at which the disk is rotating.

Assume the disk spins with constant angular velocity.

We can easily calculate omega by counting the revolutions per second.

And there’s our matrix for a spinning—but not wobbling—disk.

Now let’s try a slightly more difficult example. Let’s describe the motion of this wobbly, spinning disk as
it rotates on this stick.

The disk is itself rotating clockwise about its center of mass when viewed from the positive z-axis. As
before, we can find the rotation rate, omega-D, of a marked point by counting the revolutions per
second. Assume omega_D is constant.

Now, observe the slight tilt of the disk off of horizontal.

This tilt is created by a rotation about a tilt axis.

The tilt axis is the vector in the xy-plane about which the disk is rotated by some small angle theta,
creating the tilt.
The wobble is created because the tilt axis is rotating clockwise about the positive z-axis.

We can visualize this by observing that the normal vector to the disk rotates in a cone shape about the z-
axis. By tracking the normal vector’s revolutions per second, we can find the rotation rate of the
wobble, omega-W, of the normal vector. This is also the rotation rate for tilt axis. We assume omega_W
is constant. Notice that omega-D and omega-W are different rotation rates.

For simplicity, we assume that the marked point begins along the x-axis; and the initial tilt axis aligns
with the x-axis, with the tilt angle theta.

Let’s start by creating a sequence of rotations that rotates the marked point to the angle omega_D
times t

and the tilt axis to the angle omega_W times t

for any time t.
To describe this motion, we are going to

decompose the behavior into a sequence of rotations about

el, e2, and e3, which have the benefit of being easy to describe mathematically.



| want to start by eliminating the tilt of the disk, so we can imagine it spinning parallel to the ground.

What is the matrix that undoes the tilt of theta degrees about the x-axis? Pause and write down a
matrix.

We rotate by an angle negative theta about the positive x-axis, which is represented by this matrix.
Now,

| rotate the marked point clockwise about the z-axis by the angle (omega_D minus omega_W) times t.

This matrix describes the angle difference traveled by the marked point relative to the position of the tilt
axis.
Now, we need to make sure that we tilt the disk again so that we can describe the wobble.

Since we assume the tilt axis begins along the x-axis, we rotate the disk back to the initial tilted position
by theta degrees.

This counterclockwise, time-independent rotation about the x-axis is represented by this matrix.
Finally we must describe the wobble, created by the rotation of the tilt axis. The tilt axis is rotating
clockwise about the positive z-axis with rotation rate omega-W,

so at time t, it has rotated by omega_ W t degrees,

which is what this matrix does.

How will we combine these matrices to describe the motion of the marked point? Pause and discuss.
We multiply the matrices together. The order we apply each matrix matters. We must perform the
rotations in the same order we decomposed the motion, because matrices do not multiply
commutatively.

Let’s understand geometrically why this worked. The angle of the marker is changed in two steps of this
process,

first a rotation by angle omega-D minus omega-W times t,

and then by an angle omega_W times t.

In the end, it ends up exactly where it should, at omega-D times t.
Only the final matrix affects the tilt axis, rotating it by the angle

omega-W times t.
Because the disk is a rigid object, by describing the position of the marked point and the tilt axis for all

times with matrices, we’ve actually described the position of every point on the disk.

We can find the location of any point



attimet

by applying this matrix operation to any vector on the initial disk.
Now, let’s go back to the badly thrown disk.

We can apply the rotational transformation directly to our thrown disk.

The only changes might be to the rotation rates and the initial position. You can think about how we
might change the formula. We’ll ignore that. So all that is left to consider is the translation.

If you throw a disk and watch it from the side, we can ignore the rotations and focus on the translation
of the center point of the disk. For the small time interval that we are interested in describing, the disk
moves in a straight, horizontal path. So this vector equation approximates the translation.

Because the disk is a rigid object, we get the full description of the motion by simply adding in the
translation.

To the rotation of the wobbly disk to obtain the following equation of motion for any point on the disk.
If you thought this problem was cool, you’re not the only one. Richard Feynman studied the kinematics
AND the dynamics of the wobbly disk. He was able to show that the rotation rate of the special marked
point, omega-D, was exactly twice the rotation rate, omega-W, of the tilt axis. This realization ultimately
led to insights into the behavior of electrons.

To Review

In this video, we saw that rotation matrices are orthogonal matrices with determinant equal to positive
1.

The kinematics of rigid bodies involves breaking a problem into translation and rotation.

The rotations may be decomposed into several time dependent rotation matrices that are multiplied
together.

The matrix product added to the translation describes the location at any time of all points on the rigid
body.

| hope you’ll try to describe the motions of various rotating objects that you encounter. Have fun, and
good luck!
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