Overview: Transfer Pricing

- Framework and Economic Principles

- Cases Considered
 - No outside market for upstream good
 - Competitive outside market for upstream good
 - Market power in outside market for upstream good
 - Tax considerations

- Vertical Integration

Decision Making in a Large Firm

- Large firms comprised of divisions (small internal firms), each operating relatively independently

- How can efficient allocation of inputs/outputs across divisions be achieved?
 - **Centralization**: Dictate all quantities & transfers
 Problem: communication is often prohibitive.
 - **Decentralization**: Let divisions decide on quantities and prices
 Problem: how to make sure local units make decisions that maximize total profits?
Adam Smith and Alfred Sloan

- Adam Smith’s great insight:
 - given proper incentives, each individual pursuing his or her self interest maximizes the performance of the economy.
 - under certain conditions, market prices provide efficient incentives

- Alfred Sloan used this insight as a principle of organization within a firm
 - Divide into divisions (“profit centers”)
 - Each division maximizes profits

Transfer Pricing in a Large Firm

- Each division decides on its own production and on its own pricing for external parties, but is also responsible for its own profits.

- Terminology : P&L responsibility, BU's, profit centers

- This requires a way to value internal transfers (Transfer Pricing) such that divisional profit maximization implies firm profit maximization
 - Prices set by top management
 - Issues
Optimal Transfers

- NR(Q) is revenue from Q less cost of processing Q (in downstream division)
- Profits of the firm, in terms of Q, are $\Pi = NR(Q) - C(Q)$
- What is the profit maximizing level of Q? (Drum roll ...)

$$MC(Q) = NMR(Q)$$
Divisional Profit Maximization

- Q is priced at p for internal transfers.

- Upstream Division:
 - Revenues = p Q_u, Costs = C(Q_u)
 - (Internal) Profits \(\Pi_u = pQ_u - C(Q_u) \)
 - Maximizing: Produce \(Q_u \) such that \(p = MC(Q_u) \)

- Downstream Division:
 - Revenues = \(NR(Q_d) \), Costs = \(p Q_d \)
 - (Internal) Profits \(\Pi_d = NR(Q_d) - pQ_d \)
 - Maximizing: Order \(Q_d \) such that \(p = NMR(Q_d) \)

Setting the Transfer Price

- Optimal Transfer Price:
 \(p^* \) such that \(Q_d = Q_u \)

- We have \(p^* = MC(Q_u) = NMR(Q_d) \)
 - If wrong transfer price set, either
 - \(Q_d > Q_u \) (shortage of input)
 - \(Q_d < Q_u \) (surplus of input)
 - Much easier to set transfer price with competitive outside markets (follows after example)
Optimal transfer price p^*

Upstream Profits (No FC)

Downstream Profits (No FC)

Q (produced and processed)

MC (upstream)

NMR (downstream)

Internal Optimal Transfer Pricing (No Outside Market)
Example: Firm makes chips & computers (e.g. Apple and the 3 GHz chip)

- Upstream division makes chips
- Downstream divisions assembles computers
- Data:
 - **Upstream: Chip Manufacturing Plant:** Q is # of chips in thousands
 - Total Costs: \(TC_u = Q^2 \implies MC_u = 2Q \)
 - **Downstream: Computer Manufacture**
 - Need one chip per machine (Q also represents # computers)
 - Demand: \(P = 4000 - 4Q \) (Firm monopolizes their demand)
 - Assembly Costs (all costs except the chip) = 1500 Q:
 \[MC^a = 1500 \]

Example: continued

- NMR is “Demand for Chips” from downstream division
 \[
 R = PQ = (4000 - 4Q)Q \\
 NR = (P - MC^a)Q = (2500 - 4Q)Q \\
 NMR = 2500 - 8Q
 \]
- Optimal chip production has NMR = MC_u
 \[
 NMR = 2500 - 8Q = 2Q = MC_u \\
 2500 = 10Q \\
 Q = 250
 \]
- Transfer Price: \(p = 2(250) = 500 \) (\(= MC_u \))
Example: continued

• Profits:
 Upstream Division: \(pQ - TC_u = 500(250) - (250)^2 = 62.5 \text{ m} \)
 Downstream Div: \(NR - pQ = 1500(250) - 500(250) = 250.0 \text{ m} \)
 Total Company Profits = \(62.5 \text{ m} + 250 \text{ m} = 312.5 \text{ m} \)

(Note how transfer revenue/cost cancels out)
Various Issues

- If there are many divisions, do we need new principles for transfer pricing?
- What if there are outside sources of the chip?
- Why does each division’s internal “profit” matter?
- Are there tax considerations?
- Does market power matter?

Multiple Sources or Uses

1. Multiple Sources:

 \[
 C_1(Q_1) \quad \text{NR}(Q_1+Q_2) \quad M
 \]
 \[
 C_2(Q_2) \quad \text{NR}(Q_1+Q_2) \quad M
 \]

 Optimal Transfer Price: \(p^* = MC_1(Q_1) = MC_2(Q_2) = NMR(Q_1+Q_2) \)

2. Multiple Uses:

 \[
 C(Q_1+Q_2) \quad \text{NR}_1(Q_1) \quad M_1
 \]
 \[
 \text{NR}_2(Q_2) \quad \text{NR}_2(Q_2) \quad M_2
 \]

 Optimal Transfer Price: \(p^* = NMR_1(Q_1) = NMR_2(Q_2) = MC(Q_1+Q_2) \)
Application: Competitive Outside Market

- Competitive Outside Market
 - You can buy Q at price p (market is a source)
 - You can sell Q at price p (market is a use)
 - Set transfer price $p^* = p$, market price

- Easiest Case: No calculation required
 - Transfer price = market price (end of story)
Graphically

Back to the Example

Suppose there is a substitute chip available for $350

- So ………… Set transfer price $p = 350$
- Upstream (chip) division produces so that

 \[p = MC_u, \text{ or } 350 = 2Q, \text{ or } Q = 175 \]
- Downstream (computer) division orders chips until

 \[p = NMR, \text{ or } 350 = 2500 - 8Q, \text{ or } Q = 268.75 \]
- So, 175 (thousand) produced, 93.75 purchased outside, 268.75 computers made.

- Profits = NR(268.75) - TC(175) - 350(93.75) = 319.5 m
- Note: 319.5 m > 312.5 m; 7 m additional profit
Application: Outside Market Power

- You monopolize an outside market for intermediate product \((M_1)\)

- With market power, \(p^* = MR_{outside} < AR_{outside}\)

- Summary: Transfer at MC; the outside market price \(p\) is higher than transfer price \(p^*\).
Divisional Profits and Evaluation

- Internal Profits add to Firm Profits
- Are division profits useful for evaluating performance?
 - It depends: Can reflect efficiency gains in production
 - Yes, with outside competitive market
- Raises bargaining issues for prices
 - Increased p raises upstream profits, lowers downstream profits
 - This is one reason p is set by top management
- If a division can set p, losses typically result
 - Double Marginalization

Double Marginalization

Upstream Division Sets Transfer Price

Downstream Division Sets Transfer Price
Suppose Upstream (chip) division sets price.

- NMR is “Demand for Chips” from downstream division
 \[NMR = 2500 - 8Q \]
 so Chip Revenue \(CR = (2500 - 8Q)Q \)

- Upstream Profit Max: produce chips until \(MCR = MC_u \)
 \[MCR = 2500 - 16Q = 2Q = MC_u \]
 \[2500 = 18Q \]
 \[Q = 138.9, \quad \text{Transfer Price} = 2500 - 8(138.9) = 1388.9 \]

- Profits:
 - Upstream Division: \(pQ - TC_u = 173.7 \text{ m} > 62.5 \text{ m} \)
 - Downstream Division: \(NR - pQ = 77.1 \text{ m} < 250 \text{ m} \)
 - Total Company Profits = \(173.1 \text{ m} + 77.1 \text{ m} = 250.8 \text{ m} < 312.5 \text{ m} \)

- 61.7 m lost due to bad management of transfers
Tax Avoidance

• Suppose your divisions are located in different countries, with different tax rates.

• Separate books for taxes and for management
 – Legal limits on what can be reported for taxes

• Can adjust transfer prices to “move” profits from high tax countries to low tax countries
 – WSJ article for many examples

Tax Avoidance

• High tax for downstream division suggests raising transfer price, raising downstream costs and lowering downstream profits

• With common books, tradeoff between efficient production and tax avoidance
Notes on Vertical Integration

• Wrong arguments for vertical integration

• Reasons for vertical integration

• Costs of vertical integration

Wrong Arguments for VI

• Capture profits of suppliers
 – Need compensation for extra UCC
 – Future economic profits will be reflected in acquisition price

• Protect against price rises
 – Price rises are reflected in opportunity cost
Reasons for Vertical Integration

- Transaction cost economics (TCE)
- Hold-up
- Externalities and synergies
- Information flows stay within the firm
- Ability to decide on incentives
- Price discrimination

Costs of Vertical Integration

- Market discipline (competition) gives strong incentives.
- Non-integration maximizes flexibility and improves matching.
Take Away Points

• Transfer pricing brings the market in the firm and allows the creation of profit centers.
• The optimal transfer price equals the marginal cost.
• With competitive outside market, transfer price equals market price.
• Transfer prices have tax implications. Separate tax and internal books are typical.
• Integration is a complex trade-off. Always consider contracting as an alternative.