Non-Linear Optimization

Distinguishing Features

Common Examples

EOQ

Balancing Risks

Minimizing Risk
Hierarchy of Models

Network Flows
Linear Programs
Mixed Integer Linear Programs
A More Academic View

- Mixed Integer Linear Programs
- Non-Convex Optimization
- Network Flows
- Linear Programs
- Convex Optimization
A More Academic View

- Integer Models
- Non-Convex Optimization
- Networks & Linear Models
- Convex Optimization
Convexity

The Distinguishing Feature
Separates Hard from Easy

- Convex Combination
 - Weighted Average
 - Non-negative weights
 - Weights sum to 1
Convex Functions

The function lies below the line.

Examples?

Convex combinations of the values.
What’s “Easy”

- Find the minimum of a Convex Function

- A local minimum is a global minimum
Convex Set

- A set S is CONVEX if every convex combination of points in S is also in S.
- The set of points above a convex function.
What’s “Easy”

- Find the minimum of a Convex Function over (subject to) a Convex Set
Concave Function

The function lies ABOVE the line

Examples?
What’s “Easy”

Find the maximum of a Concave Function over (subject to) a Convex Set.
Academic Questions

- Is a linear function convex or concave?
- Do the feasible solutions of a linear program form a convex set?
- Do the feasible solutions of an integer program form a convex set?
Ugly - Hard

Cost

Volume

15.057 Spring 03 Vande Vate
Integer Programming is “Hard”

Why?
Review

- Convex Optimization
 - Convex (min) or Concave (max) objective
 - Convex feasible region
- Non-Convex Optimization
- Stochastic Optimization
 - Incorporates Randomness
Agenda

- Convex Optimization
 - Unconstrained Optimization
 - Constrained Optimization
- Non-Convex Optimization
 - Convexification
 - Heuristics
Convex Optimization

Unconstrained Optimization

► If the partial derivatives exist (smooth)
 ■ find a point where the gradient is 0

► Otherwise (not smooth)
 ■ find point where 0 is a subgradient
Unconstrained Convex Optimization

Smooth

- Find a point where the Gradient is 0
- Find a solution to $\nabla f(x) = 0$
 - Analytically (when possible)
 - Iteratively otherwise
Solving $\nabla f(x) = 0$

- **Newton’s Method**
 - Approximate using gradient
 - $\nabla f(y) \approx \nabla f(x) + \frac{1}{2}(y-x)^t H_x (y-x)$
 - Computing next iterate involves inverting H_x

- **Quasi-Newton Methods**
 - Approximate H and update the approximation so we can easily update the inverse
 - (BFGS) Broyden, Fletcher, Goldfarb, Shanno
Line Search

- Newton/Quasi-Newton Methods yield direction to next iterate
- 1-dimensional search in this direction
- Several methods
Unconstrained Convex Optimization

- Non-smooth
 - Subgradient Optimization
 - Find a point where 0 is a subgradient
What’s a Subgradient

- Like a gradient
 \[f(y) \geq f(x) + \gamma_x(y-x) \]

\[f(y) = f(x) - 2(y-x) \]

- 0 is a subgradient if and only if ...

\[1 \geq \gamma_x \geq -2 \]

\[f(x) \text{ is a minimum point} \]
Steepest Descent

- If 0 is not a subgradient at x, subgradient indicates where to go
 - Direction of steepest descent
- Find the best point in that direction
 - line search
Examples

- EOQ Model
- Balancing Risk
- Minimizing Risk
EOQ

- How large should each order be
- Trade-off
 - Cost of Inventory (known)
 - Cost of transactions (what?)
- Larger orders
 - Higher Inventory Cost
 - Lower Ordering Costs
The Idea

- Increase the order size until the incremental cost of holding the last item equals the incremental savings in ordering costs
- If the costs exceed the savings?
- If the savings exceed the costs?
Modeling Costs

- Q is the order quantity
- Average inventory level is $Q/2$
- $h \cdot c$ is the Inv. Cost. in $$/unit/year
- Total Inventory Cost $= h \cdot c \cdot Q/2$
- Last item contributes what to inventory cost?
 $= h \cdot c/2$
Modeling Costs

- D is the annual demand
- How many orders do we place? \(\frac{D}{Q} \)
- Transaction cost is A per transaction
- Total Transaction Cost \(AD/Q \)
Total Cost

Total Cost = h*cQ/2 + AD/Q

What kind of function?
Incremental Savings

What does the last item save?

Savings of Last Item

\[\frac{AD}{Q-1} - \frac{AD}{Q} \]

\[\frac{[ADQ - AD(Q-1)]}{[Q(Q-1)]} \sim \frac{AD}{Q^2} \]

Order up to the point that extra carrying costs match incremental savings

\[\frac{hc}{2} = \frac{AD}{Q^2} \]

\[Q^2 = \frac{2AD}{hc} \]

\[Q = \sqrt{\frac{2AD}{hc}} \]
Key Assumptions?

- Known constant rate of demand
Value?

- No one can agree on the ordering cost
- Each value of the ordering cost implies
 - A value of Q from which we get
 - An inventory investment $c\times Q/2$
 - A number of orders per year: D/Q
- Trace the balance for each value of ordering costs
The EOQ Trade off

- Known values
 - Annual Demand D
 - Product value c
 - Inventory carrying percentage h

- Unknown transaction cost cost A

- For each value of A
 - Calculate $Q = \sqrt{2AD/(h*c)}$
 - Calculate Inventory Investment $cQ/2$
 - Calculate Annual Orders D/Q
The Tradeoff Benchmark

EOQ Trade off

Where are you?
Where can you be?
What prevents getting there?
Balancing Risks
Variability

- Some events are inherently variable
 - When customers arrive
 - How many customers arrive
 - Transit times
 - Daily usage
 - Stock Prices
 - ...

- Hard to predict exactly
 - Dice
 - Lotteries
Random Variables

Examples

- Outcome of rolling a dice
- Closing Stock price
- Daily usage
- Time between customer arrivals
- Transit time
- Seasonal Demand
Distribution

- The values of a random variable and their frequencies
- Example: Rolling 2 Fair Die

<table>
<thead>
<tr>
<th>Number of Outcomes</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>26</th>
<th>36</th>
<th>46</th>
<th>56</th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of Outcomes</td>
<td>0.028</td>
<td>0.056</td>
<td>0.083</td>
<td>0.111</td>
<td>0.139</td>
<td>0.167</td>
<td>0.139</td>
<td>0.111</td>
<td>0.083</td>
<td>0.056</td>
<td>0.028</td>
</tr>
<tr>
<td>Value</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
Theoretical vs Empirical

Empirical Distribution
- Based on observations

<table>
<thead>
<tr>
<th>Value</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Outcomes</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Fraction of Outcomes</td>
<td>0.03</td>
<td>0.06</td>
<td>0.03</td>
<td>0.14</td>
<td>0.08</td>
<td>0.25</td>
<td>0.22</td>
<td>0.08</td>
<td>0.08</td>
<td>0.03</td>
<td>-</td>
</tr>
</tbody>
</table>

Theoretical Distribution
- Based on a model

<table>
<thead>
<tr>
<th>Value</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of Outcomes</td>
<td>0.03</td>
<td>0.06</td>
<td>0.08</td>
<td>0.11</td>
<td>0.14</td>
<td>0.17</td>
<td>0.14</td>
<td>0.11</td>
<td>0.08</td>
<td>0.06</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Empirical vs Theoretical

- One Perspective: If the die are fair and we roll many many times, empirical should match theoretical.
- Another Perspective: If the die are reasonably fair, the theoretical is close and saves the trouble of rolling.
Empirical vs Theoretical

- The Empirical Distribution is flawed because it relies on limited observations
- The Theoretical Distribution is flawed because it necessarily ignores details about reality
- Exactitude? It’s random.
Continuous vs Discrete

- Discrete
 - Value of dice
 - Number of units sold
 - ...

- Continuous
 - Essentially, if we measure it, it’s discrete
 - Theoretical convenience
Probability

- Discrete: What’s the probability we roll a 12 with two fair die:
 - \(\frac{1}{36} \)

- Continuous: What’s the probability the temperature will be exactly 72.00\(^\circ\) F tomorrow at noon EST?
 - Zero!

- Events: What’s the probability that the temperature will be at least 72\(^\circ\) F tomorrow at noon EST?
Continuous Distribution

Probability the random variable is greater than 2 is the area under the curve above 2.
Total Probability

- Empirical, Theoretical, Continuous, Discrete, ...
- Probability is between 0 and 1
- Total Probability (over all possible outcomes) is 1
Summary Stats

- The Mean
 - Weights each outcome by its probability
 - AKA
 - Expected Value
 - Average
 - May not even be possible
 - Example:
 - Win $1 on Heads, nothing on Tails
Summary Stats

- The Variance
 - Measures spread about the mean
 - How unpredictable is the thing

Which would you rather manage?

Variance 1

Variance 9

15.057 Spring 03 Vande Vate
Variance

Nomal Distributions with Different Variances

Variance 1

Variance 9

15.057 Spring 03 Vande Vate
Std. Deviation

- Variance is measured in units squared
 - Think sum of squared errors
- Standard Deviation is the square root
 - It’s measured in the same units as the random variable
- The two rise and fall together
- Coefficient of Variation
 - Standard Deviation/Mean
 - Spread relative to the Average
Balancing Risk

- Basic Insight
- Bet on the outcome of a variable process
- Choose a value
 - You pay $0.5/unit for the amount your bet exceeds the outcome
 - You earn the smaller of your value and the outcome
- Question: What value do you choose?
Similar to...

- Anything you are familiar with?
The Distribution

Mean 5
Std. Dev. 1
The Idea

- Balance the risks
- Look at the last item
 - What did it promise?
 - What risk did it pose?
- If Promise is greater than the risk?
- If the Risk is greater than the promise?
Measuring Risk and Return

- Revenue from the last item
 - $1 if the Outcome is greater, $0 otherwise

- Expected Revenue
 - $1*Probability Outcome is greater than our choice

- Risk posed by last item
 - $0.5 if the Outcome is smaller, $0 otherwise

- Expected Risk
 - $0.5*Probability Outcome is smaller than our choice
Balancing Risk and Reward

- Expected Revenue
 - $1 \times \text{Probability Outcome is greater than our choice}

- Expected Risk
 - $0.5 \times \text{Probability Outcome is smaller than our choice}

- How are probabilities Related?
Risk & Reward

How are they related?

Prob. Outcome is smaller

Our choice

Prob. Outcome is larger
Balance

- **Expected Revenue**
 - $1 \times (1 - \text{Probability Outcome is smaller than our choice})$

- **Expected Risk**
 - $0.5 \times \text{Probability Outcome is smaller than our choice}$

- **Set these equal**
 - $1 \times (1 - P) = 0.5 \times P$
 - $1 = 1.5 \times P$
 - $2/3 = P = \text{Probability Outcome is smaller than our choice}$
Making the Choice

Distribution

Prob. Outcome is smaller

Our choice

Cumulative Probability

\[
\text{Our choice} = \frac{2}{3}
\]

15.057 Spring 03 Vande Vate
Constrained Optimization

- Feasible Direction techniques
- Eliminating constraints
 - Implicit Function
 - Penalty Methods
- Duality
Feasible Directions

Unconstrained Optimization

- Start at a point: \(x_0 \)
- Identify an improving direction: \(d \)
- Find a best solution in direction \(d \): \(x + \varepsilon d \)
- Repeat

- A Feasible direction: one you can move in
- A Feasible solution: don’t move too far.
- Typically for Convex feasible region
Constrained Optimization

Penalty Methods

- Move constraints to objective with penalties or barriers
 - As solution approaches the constraint the penalty increases
 - Example:
 - \(\min f(x) \Rightarrow \min f(x) + \frac{t}{3x - x^2} \)
 - s.t. \(x^2 \leq 3x \)
- as \(x^2 \) approaches 3x, penalty increases rapidly
Relatively reliable tools for

- Quadratic objective
- Linear constraints
- Continuous variables
Summary

- "Easy Problems"
 - Convex Minimization
 - Concave Maximization

- Unconstrained Optimization
 - Local gradient information

- Constrained problems
 - Tricks for reducing to unconstrained or simply constrained problems

- NLP tools practical only for "smaller" problems