Conditional expectations, filtration and martingales

Content.

1. Conditional expectations
2. Martingales, sub-martingales and super-martingales

1 Conditional Expectations

1.1 Definition

Recall how we define conditional expectations. Given a random variable X and an event A we define $E[X | A] = \frac{E[X 1(A)]}{P(A)}$.

Also we can consider conditional expectations with respect to random variables. For simplicity say Y is a simple random variable on Ω taking values y_1, y_2, \ldots, y_n with some probabilities $P(\omega : Y(\omega) = y_i) = p_i$.

Now we define conditional expectation $E[X | Y]$ as a random variable which takes value $E[X | Y = y_i]$ with probability p_i, where $E[X | Y = y_i]$ should be understood as expectation of X conditioned on the event $\{ \omega \in \Omega : Y(\omega) = y_i \}$.

It turns out that one can define conditional expectation with respect to a σ-field. This notion will include both conditioning on events and conditioning on random variables as special cases.

Definition 1. Given Ω, two σ-fields $G \subset F$ on Ω, and a probability measure \mathbb{P} on (Ω, F). Suppose X is a random variable with respect to F but not necessarily with respect to G, and suppose X has a finite L_1 norm (that is $E[|X|] < \infty$).

The conditional expectation $E[X | G]$ is defined to be a random variable Y which satisfies the following properties:

(a) Y is measurable with respect to G.

1
(b) For every $A \in \mathcal{G}$, we have $E[X1\{A\}] = E[Y1\{A\}]$.

For simplicity, from now on we write $Z \in \mathcal{F}$ to indicate that Z is measurable with respect to \mathcal{F}. Also let $\mathcal{F}(Z)$ denote the smallest σ-field such with respect to which Z is measurable.

Theorem 1. The conditional expectation $E[X|\mathcal{G}]$ exists and is unique.

Uniqueness means that if $Y' \in \mathcal{G}$ is any other random variable satisfying conditions (a),(b), then $Y' = Y$ a.s. (with respect to measure \mathbb{P}). We will prove this theorem using the notion of Radon-Nikodym derivative, the existence of which we state without a proof below. But before we do this, let us develop some intuition behind this definition.

1.2 Simple properties

- Consider the trivial case when $\mathcal{G} = \{\emptyset, \Omega\}$. We claim that the constant value $c = E[X]$ is $E[X|\mathcal{G}]$. Indeed, any constant function is measurable with respect to any σ-field So (a) holds. For (b), we have $E[X1\{\Omega\}] = E[X] = c$ and $E[c1\{\Omega\}] = c$; and $E[X1\{\emptyset\}] = 0$ and $E[c1\{\emptyset\}] = 0$.

- As the other extreme, suppose $\mathcal{G} = \mathcal{F}$. Then we claim that $X = E[X|\mathcal{G}]$. The condition (b) trivially holds. The condition (a) also holds because of the equality between two σ-fields.

- Let us go back to our example of conditional expectation with respect to an event $A \subset \Omega$. Consider the associated σ-fields $\mathcal{G} = \{\emptyset, A, A^c, \Omega\}$ (we established in the first lecture that this is indeed a σ-field). Consider a random variable $Y : \Omega \to \mathbb{R}$ defined as

$$Y(\omega) = E[X|A] = \frac{E[X1\{A\}]}{P(A)} \triangleq c_1$$

for $\omega \in A$ and

$$Y(\omega) = E[X|A^c] = \frac{E[X1\{A^c\}]}{P(A^c)} \triangleq c_2$$

for $\omega \in A^c$. We claim that $Y = E[X|\mathcal{G}]$. First $Y \in \mathcal{G}$. Indeed, assume for simplicity $c_1 < c_2$. Then $\{\omega : Y(\omega) \leq x\} = \emptyset$ when $x < c_1$, $= A$...
for $c_1 \leq x < c_2 = \Omega$ when $x \geq c_2$. Thus $Y \in \mathcal{G}$. Then we need to check equality $\mathbb{E}[X1\{B\}] = \mathbb{E}[Y1\{B\}]$ for every $B = \emptyset, A, A^\complement, \Omega$, which is straightforward to do. For example say $B = A$. Then

$$\mathbb{E}[X1\{A\}] = \mathbb{E}[X|A]P(A) = c_1P(A).$$

On the other hand we defined $Y(\omega) = c_1$ for all $\omega \in A$. Thus

$$\mathbb{E}[Y1\{A\}] = c_1\mathbb{E}[1\{A\}] = c_1P(A).$$

And the equality checks.

- Suppose now \mathcal{G} corresponds to some partition A_1, \ldots, A_m of the sample space Ω. Given $X \in \mathcal{F}$, using a similar analysis, we can check that $Y = \mathbb{E}[X|\mathcal{G}]$ is a random variable which takes values $\mathbb{E}[X|A_j]$ for all $\omega \in A_j$, for $j = 1, 2, \ldots, m$. You will recognize that this is one of our earlier examples where we considered conditioning on a simple random variable Y to get $\mathbb{E}[X|Y]$. In fact this generalizes as follows:

- Given two random variables $X, Y : \Omega \rightarrow \mathbb{R}$, suppose both $\in \mathcal{F}$. Let $\mathcal{G} = \mathcal{G}(Y) \subset \mathcal{F}$ be the field generated by Y. We define $\mathbb{E}[X|Y]$ to be $\mathbb{E}[X|\mathcal{G}]$.

1.3 Proof of existence

We now give a proof sketch of Theorem 1.

Proof. Given two probability measures $\mathbb{P}_1, \mathbb{P}_2$ defined on the same (Ω, \mathcal{F}), \mathbb{P}_2 is defined to be absolutely continuous with respect to \mathbb{P}_1 if for every set $A \in \mathcal{F}$, $\mathbb{P}_1(A) = 0$ implies $\mathbb{P}_2(A) = 0$.

The following theorem is the main technical part for our proof. It involves using the familiar idea of change of measures.

Theorem 2 (Radon-Nikodym Theorem). Suppose \mathbb{P}_2 is absolutely continuous with respect to \mathbb{P}_1. Then there exists a non-negative random variable $Y : \Omega \rightarrow \mathbb{R}_+$ such that for every $A \in \mathcal{F}$

$$\mathbb{P}_2(A) = \mathbb{E}_{\mathbb{P}_1}[Y1\{A\}].$$

Function Y is called Radon-Nikodym (RN) derivative and sometimes is denoted $d\mathbb{P}_2/d\mathbb{P}_1$.

Problem 1. Prove that \(Y \) is unique up-to measure zero. That is if \(Y' \) is also RN derivative, then \(Y = Y' \) a.s. w.r.t. \(P_1 \) and hence \(P_2 \).

We now use this theorem to establish the existence of conditional expectations. Thus we have \(G \subset F \), \(P \) is a probability measure on \(F \) and \(X \) is measurable with respect to \(F \). We will only consider the case \(X \geq 0 \) such that \(E[X] < \infty \). We also assume that \(X \) is not constant, so that \(E[X] > 0 \). Consider a new probability measure \(P_2 \) on \(G \) defined as follows:

\[
P_2(A) = \frac{E_P[X \mathbb{1}_{\{A\}}]}{E_P[X]}, \quad A \in G,
\]

where we write \(E_P \) in place of \(E \) to emphasize that the expectation operator is with respect to the original measure \(P \). Check that this is indeed a probability measure on \((\Omega, G)\). Now \(P \) also induces a probability measure on \((\Omega, G)\). We claim that \(P_2 \) is absolutely continuous with respect to \(P \). Indeed if \(P(A) = 0 \) then the numerator is zero. By the Radon-Nikodym Theorem then there exists \(Z \) which is measurable with respect to \(G \) such that for any \(A \in G \)

\[
P_2(A) = E_P[Z \mathbb{1}_{\{A\}}].
\]

We now take \(Y = Z E_P[X] \). Then \(Y \) satisfies the condition (b) of being a conditional expectation, since for every set \(B \)

\[
E_P[Y \mathbb{1}_{\{B\}}] = E_P[X] E_P[Z \mathbb{1}_{\{B\}}] = E_P[X \mathbb{1}_{\{B\}}].
\]

The second part, corresponding to the uniqueness property is proved similarly to the uniqueness of the RN derivative (Problem 1).

\[\Box \]

2 Properties

Here are some additional properties of conditional expectations.

Linearity. \(E[aX + Y \mid G] = a E[X \mid G] + E[Y \mid G] \).

Monotonicity. If \(X_1 \leq X_2 \) a.s, then \(E[X_1 \mid G] \leq E[X_2 \mid G] \). Proof idea is similar to the one you need to use for Problem 1.

Independence.

Problem 2. Suppose \(X \) is independent from \(G \). Namely, for every measurable \(A \subset \mathbb{R}, B \in G \) \(P(\{X \in A\} \cap B) = P(X \in A)P(B) \). Prove that \(E[X \mid G] = E[X] \).
Conditional Jensen’s inequality. Let \(\phi \) be a convex function and \(\mathbb{E}[|X|], \mathbb{E}[|\phi(X)|] < \infty \). Then \(\phi(\mathbb{E}[X|G]) \leq \mathbb{E}[\phi(X)|G] \).

Proof. We use the following representation of a convex function, which we do not prove (see Durrett [1]). Let

\[
A = \{(a, b) \in \mathbb{Q} : ax + b \leq \phi(x), \forall x\}.
\]

Then \(\phi(x) = \sup\{ax + b : (a, b) \in A\} \).

Now we prove the Jensen’s inequality. For any pair of rationals \(a, b \in \mathbb{Q} \) satisfying the bound above, we have, by monotonicity that \(\mathbb{E}[\phi(X)|G] \geq a\mathbb{E}[X|G] + b \), a.s., implying \(\mathbb{E}[\phi(X)|G] \geq \sup\{a\mathbb{E}[X|G] + b : (a, b) \in A\} = \phi(\mathbb{E}[X|G]) \) a.s.

Tower property. Suppose \(G_1 \subset G_2 \subset F \). Then \(\mathbb{E}[\mathbb{E}[X|G_1]|G_2] = \mathbb{E}[X|G_1] \) and \(\mathbb{E}[\mathbb{E}[X|G_2]|G_1] = \mathbb{E}[X|G_1] \). That is the smaller field wins.

Proof. By definition \(\mathbb{E}[X|G_1] \) is \(G_2 \) measurable. Therefore it is \(G_1 \) measurable. Then the first equality follows from the fact \(\mathbb{E}[X|G] = X \), when \(X \in G \), which we established earlier. Now fix any \(A \in G_1 \). Denote \(\mathbb{E}[X|G_1] \) by \(Y_1 \) and \(\mathbb{E}[X|G_2] \) by \(Y_2 \). Then \(Y_1 \in G_1, Y_2 \in G_2 \). Then

\[
\mathbb{E}[Y_11\{A\}] = \mathbb{E}[X1\{A\}],
\]

simply by the definition of \(Y_1 = \mathbb{E}[X|G_1] \). On the other hand, we also have \(A \in G_2 \). Therefore

\[
\mathbb{E}[X1\{A\}] = \mathbb{E}[Y_21\{A\}].
\]

Combining the two equalities we see that \(\mathbb{E}[Y_21\{A\}] = \mathbb{E}[Y_11\{A\}] \) for every \(A \in G_1 \). Therefore, \(\mathbb{E}[Y_2|G_1] = Y_1 \), which is the desired result.

An important special case is when \(G_1 \) is a trivial \(\sigma \)-field \(\{\emptyset, \Omega\} \). We obtain that for every field \(G \)

\[
\mathbb{E}[\mathbb{E}[X|G]] = \mathbb{E}[X].
\]
3 Filtration and martingales

3.1 Definition

A family of \(\sigma \)-fields \(\{F_t\} \) is defined to be a filtration if \(F_{t_1} \subset F_{t_2} \) whenever \(t_1 \leq t_2 \). We will consider only two cases when \(t \in \mathbb{Z}_+ \) or \(t \in \mathbb{R}_+ \). A stochastic process \(\{X_t\} \) is said to be adapted to filtration \(\{F_t\} \) if \(X_t \in F_t \) for every \(t \).

Definition 2. A stochastic process \(\{X_t\} \) adapted to a filtration \(\{F_t\} \) is defined to be a martingale if

1. \(\mathbb{E}[|X_t|] < \infty \) for all \(t \).
2. \(\mathbb{E}[X_t|F_s] = X_s \), for all \(s < t \).

When equality is substituted with \(\leq \), the process is called a **supermartingale**. When it is substituted with \(\geq \), the process is called a **submartingale**.

Suppose we have a stochastic process \(\{X_t\} \) adapted to filtration \(\{F_t\} \) and suppose for some \(s' < s < t \) we have \(\mathbb{E}[X_t|F_{s'}] = X_s \) and \(\mathbb{E}[X_s|F_{s'}] = X_{s'} \).

Then using Tower property of conditional expectations

\[
\mathbb{E}[X_t|F_{s'}] = \mathbb{E}[\mathbb{E}[X_t|F_{s}]|F_{s'}] = \mathbb{E}[X_s|F_{s'}] = X_{s'}.
\]

This means that when the stochastic process \(\{X_n\} \) is discrete time it suffices to check \(\mathbb{E}[X_{n+1}|F_n] = X_n \) for all \(n \) in order to make sure that it is a martingale.

3.2 Simple examples

1. **Random walk.** Let \(X_n, n = 1, \ldots \) be an i.i.d. sequence with mean \(\mu \) and variance \(\sigma^2 < \infty \). Let \(F_n \) be the Borel \(\sigma \)-algebra on \(\mathbb{R}^n \). Then \(S_n - \mu n = \sum_{0 \leq k \leq n} X_k - \mu n \) is a martingale. Indeed \(S_n \) is adapted to \(F_n \), and

\[
\mathbb{E}[S_{n+1} - (n + 1)\mu|F_n] = \mathbb{E}[X_{n+1} - \mu + S_n - n\mu|F_n] = \mathbb{E}[X_{n+1} - \mu|F_n] + \mathbb{E}[S_n - n\mu|F_n] = \mathbb{E}[X_{n+1} - \mu] + S_n - n\mu = S_n - n\mu.
\]

Here in (a) we used the fact that \(X_{n+1} \) is independent from \(F_n \) and \(S_n \in F_n \).

2. **Random walk squared.** Under the same setting, suppose in addition \(\mu = 0 \). Then \(S^2_n - n\sigma^2 \) is a martingale. The proof of this fact is very similar.
4 Additional reading materials

• Durrett [1] Section 4.1, 4.2.

References
