The American Legal System

- The legal system of the United States operates at the state level and at the federal level
- Federal courts hear cases beyond the scope of state law
- Federal courts are divided into:
 - District Courts
 - Makes initial decision
 - Circuit Courts
 - Hears appeals from the district courts
 - Supreme Court
 - Highest level – makes final decision
The Supreme Court of the United States

- Consists of nine judges ("justices"), appointed by the President
 - Justices are distinguished judges, professors of law, state and federal attorneys
- The Supreme Court of the United States (SCOTUS) decides on most difficult and controversial cases
 - Often involve interpretation of Constitution
 - Significant social, political and economic consequences

Photo of 2005 Supreme Course justices is in the public domain. Source: [Wikimedia Commons](https://commons.wikimedia.org).
Notable SCOTUS Decisions

• Wickard v. Filburn (1942)
 • Congress allowed to intervene in industrial/economic activity
• Roe v. Wade (1973)
 • Legalized abortion
 • Decided outcome of presidential election!
 • Patient Protection and Affordable Care Act (“ObamaCare”) upheld the requirement that individuals must buy health insurance
Predicting Supreme Court Cases

• Legal academics and political scientists regularly make predictions of SCOTUS decisions from detailed studies of cases and individual justices

• In 2002, Andrew Martin, a professor of political science at Washington University in St. Louis, decided to instead predict decisions using a statistical model built from data

• Together with his colleagues, he decided to test this model against a panel of experts
Predicting Supreme Court Cases

- Martin used a method called Classification and Regression Trees (CART)
- Why not logistic regression?
 - Logistic regression models are generally not *interpretable*
 - Model coefficients indicate importance and relative effect of variables, but do not give a simple explanation of how decision is made
Data

- Cases from 1994 through 2001
- In this period, same nine justices presided SCOTUS
 - Breyer, Ginsburg, Kennedy, O’Connor, Rehnquist (Chief Justice), Scalia, Souter, Stevens, Thomas
 - Rare data set – longest period of time with the same set of justices in over 180 years
- We will focus on predicting Justice Stevens’ decisions
 - Started out moderate, but became more liberal
 - Self-proclaimmed conservative
Variables

- **Dependent Variable**: Did Justice Stevens vote to reverse the lower court decision? 1 = reverse, 0 = affirm
- **Independent Variables**: Properties of the case
 - Circuit court of origin (1st – 11th, DC, FED)
 - Issue area of case (e.g., civil rights, federal taxation)
 - Type of petitioner, type of respondent (e.g., US, an employer)
 - Ideological direction of lower court decision (conservative or liberal)
 - Whether petitioner argued that a law/practice was unconstitutional
Logistic Regression for Justice Stevens

- Some significant variables and their coefficients:
 - Case is from 2nd circuit court: +1.66
 - Case is from 4th circuit court: +2.82
 - Lower court decision is liberal: -1.22

- This is complicated…
 - Difficult to understand which factors are more important
 - Difficult to quickly evaluate what prediction is for a new case
Classification and Regression Trees

• Build a tree by splitting on variables
• To predict the outcome for an observation, follow the splits and at the end, predict the most frequent outcome
• Does not assume a linear model
• Interpretable
Splits in CART

- Split 1
 - Predict Red
 - Predict Gray

- Split 2
 - Predict Red
 - Predict Gray

- Split 3
 - Predict Red
 - Predict Gray

Independent Variable X

Independent Variable Y
Final Tree

Independent Variable X

Split 1

Split 2

Split 3

Independent Variable Y

Predict Red

Predict Gray

Red

Gray

X < 60

Y < 20

X < 85

Yes

No

Yes

No
When Does CART Stop Splitting?

• There are different ways to control how many splits are generated
 • One way is by setting a lower bound for the number of points in each subset
• In R, a parameter that controls this is minbucket
 • The smaller it is, the more splits will be generated
 • If it is too small, overfitting will occur
 • If it is too large, model will be too simple and accuracy will be poor
Predictions from CART

• In each subset, we have a bucket of observations, which may contain both outcomes (i.e., affirm and reverse)

• Compute the percentage of data in a subset of each type
 - Example: 10 affirm, 2 reverse \(\Rightarrow 10/(10+2) = 0.87 \)

• Just like in logistic regression, we can threshold to obtain a prediction
 - Threshold of 0.5 corresponds to picking most frequent outcome
ROC curve for CART

- Vary the threshold to obtain an ROC curve
Random Forests

- Designed to improve prediction accuracy of CART
- Works by building a large number of CART trees
 - Makes model less interpretable
- To make a prediction for a new observation, each tree “votes” on the outcome, and we pick the outcome that receives the majority of the votes
Building Many Trees

- Each tree can split on only a random subset of the variables
- Each tree is built from a “bagged”/“bootstrapped” sample of the data
 - Select observations randomly with replacement
 - Example – original data: 1 2 3 4 5
 - New “data”:
 - 2 4 5 2 1 → 1st tree
 - 3 5 1 5 2 → 2nd tree
 - ...

15.071x – Judge, Jury and Classifier: An Introduction to Trees 16
Random Forest Parameters

- Minimum number of observations in a subset
 - In R, this is controlled by the nodesize parameter
 - Smaller nodesize may take longer in R

- Number of trees
 - In R, this is the ntree parameter
 - Should not be too small, because bagging procedure may miss observations
 - More trees take longer to build
Parameter Selection

• In CART, the value of “minbucket” can affect the model’s out-of-sample accuracy

• How should we set this parameter?

• We could select the value that gives the best testing set accuracy
 • This is not right!
K-fold Cross-Validation

- Given training set, split into k pieces (here k = 5)
- Use k-1 folds to estimate a model, and test model on remaining one fold (“validation set”) for each candidate parameter value
- Repeat for each of the k folds
Output of k-fold Cross-Validation
Cross-Validation in R

- Before, we limited our tree using minbucket
- When we use cross-validation in R, we’ll use a parameter called cp instead
 - Complexity Parameter
- Like Adjusted R² and AIC
 - Measures trade-off between model complexity and accuracy on the training set
- Smaller cp leads to a bigger tree (might overfit)
Martin’s Model

- Used 628 previous SCOTUS cases between 1994 and 2001
- Made predictions for the 68 cases that would be decided in October 2002, before the term started
- Two stage approach based on CART:
 - First stage: one tree to predict a unanimous liberal decision, other tree to predict unanimous conservative decision
 - If conflicting predictions or predict no, move to next stage
 - Second stage consists of predicting decision of each individual justice, and using majority decision as prediction
Is the lower court decision liberal?
 Yes
 No
 Reverse

Is the case from the 2nd 3rd, DC or Federal Circuit Court?
 Yes
 No
 Affirm

Is the Respondent the US?
 Yes
 No
 Reverse

Is the primary issue civil rights, First Amendment, econom. activity or federalism?
 Yes
 No
 Reverse
 Affirm
Is Justice Ginsburg’s predicted decision liberal?

Yes

Is the lower court decision liberal?

Yes

Affirm

No

Reverse

No

Is the lower court decision liberal?

Yes

Reverse

No

Affirm

“Make a liberal decision”

“Make a conservative decision”
The Experts

- Martin and his colleagues recruited 83 legal experts
 - 71 academics and 12 attorneys
 - 38 previously clerked for a Supreme Court justice, 33 were chaired professors and 5 were current or former law school deans
- Experts only asked to predict within their area of expertise; more than one expert to each case
- Allowed to consider any source of information, but not allowed to communicate with each other regarding predictions
The Results

• For the 68 cases in October 2002:

 • Overall case predictions:
 • Model accuracy: 75%
 • Experts accuracy: 59%

 • Individual justice predictions:
 • Model accuracy: 67%
 • Experts accuracy: 68%
The Analytics Edge

• Predicting Supreme Court decisions is very valuable to firms, politicians and non-governmental organizations

• A model that predicts these decisions is both more accurate and faster than experts
 • CART model based on very high-level details of case beats experts who can process much more detailed and complex information