Problem 1 For the following questions/statements just give TRUE or FALSE answers. Do not derive the answers.

Consider a G/G/1 queueing system. The arrival rate is \(\lambda \) and service rate is \(\mu > \lambda \).

A. Let \(L_{10} \) be the steady state number of customers in positions 1 to 10 (customer in service is assumed to be in position 1). Let \(S_{10} \) be the steady state time that a typical customer was in one of the positions 1-10. Then the Little’s Law holds, namely \(\mathbb{E}[L_{10}] = \lambda \mathbb{E}[S_{10}] \).

B. The distributional law holds for \(L_{10} \) and \(S_{10} \) when the scheduling policy is

 (i) First-In-First-Out

 (ii) Last-In-First-Out

C. Suppose that the system has instead two servers (that is we have G/G/2 queueing system). Then the probability that the system is empty is \(1 - \rho \), where \(\rho = \frac{\lambda}{2\mu} \).

Problem 2 Consider an M/G/1 queueing system where arrival rate \(\lambda = 1 \) and service time with a mixed distribution. Namely, with probability 1/2 it is exponential with rate 2 and with probability 1/2 it is exponential with rate 3. Assume the system operates under the First-In-First-Out policy.

A. Compute the traffic intensity \(\rho \) of this system.

B. Suppose the revenue obtained from a customer is \(e^{-cy} \) if the customer waited \(y \) time units. Compute the expected steady state revenue when \(c = 1 \).

C. Extra credit. Suppose for every customer who waited \(y \) time units the cost \(e^{cy} \) is paid. What is the largest \(c_0 \) for which the expected cost is finite? Is \(c_0 < 1.9 \)?

Problem 3 M/D/1 Queueing system with feedback. Namely each served customer comes back to the queue with some probability \(p \) and leaves the system with probability \(1 - p \). The service time is assumed to be deterministic with value \(d \) both for the initial and returning customers. The arrival process is Poisson with rate \(\lambda \).
• Under which conditions on λ, d, p is there a steady-state regime? Do not prove this, just provide a right answer.

• Compute the expected number of customers in the queue.

 HINT: Observe that the number in the system is policy invariant for all non-preemptive work conserving scheduling policies.

Useful facts

The expected waiting time in M/G/1 queueing system under First-Come-First Serve policy is

$$E[W] = \frac{\lambda E[X^2]}{2(1 - \rho)},$$

and the Laplace Transform of the waiting time is

$$\phi_W(s) = \frac{(1 - \rho)s}{\lambda \beta(s) - \lambda + s},$$

where λ is the arrival rate, X is service time, $\rho = \lambda E[X]$ and $\beta(s)$ is the Laplace Transform of the service time distribution.