Chapter 9 Notes, 9.3 First Part
Inference for One Way Count Data
Chi-Square Test using the Multinomial Distribution

An example of the multinomial distribution: preference of ice cream flavors:

- Cells are numbered 1, \ldots, c
- Cell probabilities are \(p_1, \ldots, p_c \) where \(\sum_i p_i = 1 \)
- Cell counts are \(n_1, \ldots, n_c \) where \(\sum_i n_i = n \)
- Count r.v.’s \(N_1, \ldots, N_c \) where \(\sum_i N_i = n \).
- Multinomial distribution

\[
P(N_1 = n_1, N_2 = n_2, \ldots) = \frac{n!}{n_1!n_2! \cdots n_c!} p_1^{n_1} p_2^{n_2} \cdots p_c^{n_c}.
\]

We want to test:

- \(H_0 : p_1 = p_{10}, p_2 = p_{20}, \cdots, p_c = p_{c0} \)
- \(H_1 : \) at least one \(p_i \neq p_{i0} \)
Example: a market survey of detergents
- p_{i0} are past market shares
- p_i are current market shares
- $n_1, n_2, \ldots n_c$ are cell counts in the sample of the current market.
- Want to test whether current shares are different from the past.

Construct test statistic χ^2 as follows:

$$
e_i = np_{i0} \leftarrow \text{expected cell counts when } H_0 \text{ is true.}
$$

$$
\chi^2 = \sum_{i=1}^{c} \frac{(n_i - e_i)^2}{e_i} = \sum_i \frac{\text{(observed}_i - \text{expected}_i)^2}{\text{expected}_i}
$$

Think of χ^2 as a discrepancy of how different the observed counts are from the expected counts.

So you want χ^2 to be small. If it’s too large, it means that the observed are different from the expected. If that happens, it means something has gone wrong, namely your assumption that H_0 is true. This means we’ll reject H_0 if χ^2 is too large.

It is possible to show that as $n \to \infty$, χ^2 has a chi-square distribution with d.f. $c - 1$. (Note: We lost a d.f. since $p_i = 1$.) So, H_0 can be rejected at level α if $\chi^2 > \chi^2_{c-1, \alpha}$.

Example: Mendel’s genetic experiments

The χ^2 we introduced is a *Pearson chi-square* statistic:

$$
\chi^2 = \sum \frac{(n_i - e_i)^2}{e_i} = \sum_i \frac{\text{(observed}_i - \text{expected}_i)^2}{\text{expected}_i}
$$

Remember, this only approximately has a chi-square distribution when n is large:

$$
e_i \geq 1 \text{ and more than } 4/5^\text{th} \text{s of } e_i \text{'s are } \geq 5. \leftarrow \text{Important}
$$