Algorithm Visualization

The Ford-Fulkerson Augmenting Path Algorithm for the Maximum Flow Problem
Ford-Fulkerson Max Flow

This is the original network, plus reversals of the arcs.
This is the original network, and the original residual network.
Ford-Fulkerson Max Flow

Find any s-t path in G(x)
Ford-Fulkerson Max Flow

Determine the capacity Δ of the path.

Send Δ units of flow in the path.
Update residual capacities.
Ford-Fulkerson Max Flow

Find any s-t path
Ford-Fulkerson Max Flow

Determine the capacity Δ of the path.

Send Δ units of flow in the path. Update residual capacities.
Ford-Fulkerson Max Flow

Find any s-t path
Determine the capacity Δ of the path.

Send Δ units of flow in the path. Update residual capacities.
Find any s-t path
Determine the capacity \(\Delta \) of the path.

Send \(\Delta \) units of flow in the path. Update residual capacities.
Find any s-t path
Ford-Fulkerson Max Flow

Determine the capacity Δ of the path.

Send Δ units of flow in the path.
Update residual capacities.
There is no s-t path in the residual network. This flow is optimal.
These are the nodes that are reachable from node s.
Here is the optimal flow