Approximation Algorithms III

Maximum Satisfiability

Input: Set C of clauses over n Boolean variables, nonnegative weights w_c for each clause $c \in C$.

Output: A truth assignment to the Boolean variables that maximizes the weight of satisfied clauses.

• Special case: MAX-kSAT (each clause is of size at most k).

• Even MAX-2SAT is NP-hard.

A first algorithm:

1. Set each Boolean variable to be TRUE independently with probability $1/2$.

2. Output the resulting truth assignment.

Lemma 1. Let W_c be a random variable that denotes the weight contributed by clause c. If c contains k literals, then $\mathbb{E}[W_c] = (1 - 2^{-k})w_c$.

Proof:

• Clause c is not satisfied iff all literals are set to FALSE.

• The probability of this event is 2^{-k}.

• $\mathbb{E}[W_c] = w_c \cdot \Pr[c \text{ is satisfied}]$.

Theorem 2. The first algorithm has an expected performance guarantee of $1/2$.

Proof:

• By linearity of expectation,

$$\mathbb{E}[W] = \sum_{c \in C} \mathbb{E}[W_c] \geq \frac{1}{2} \sum_{c \in C} w_c \geq \frac{1}{2} \text{OPT}.$$

Derandomizing via the method of conditional expectations:

• Note that $\mathbb{E}[W] = \frac{1}{2} \cdot \mathbb{E}[W|x_1 = T] + \frac{1}{2} \cdot \mathbb{E}[W|x_1 = F]$.

• Also, we can compute $\mathbb{E}[W|x_1 = \{T, F\}]$ in polynomial time.
• We choose the truth assignment with the larger conditional expectation, and continue in this fashion:

\[E[W|x_1 = a_1, \ldots, x_i = a_i] = \frac{1}{2} \cdot E[W|x_1 = a_1, \ldots, x_i = a_i, x_{i+1} = T] + \frac{1}{2} \cdot E[W|x_1 = a_1, \ldots, x_i = a_i, x_{i+1} = F] . \]

• After \(n \) steps, we get a deterministic truth assignment of weight at least \(\frac{1}{2} \cdot \text{OPT} \).

An integer programming formulation:

\[
\begin{align*}
\text{max} & \quad \sum_{c \in \mathcal{C}} w_c y_c \\
\text{s.t.} & \quad \sum_{i \in c^+} x_i + \sum_{i \in c^-} (1 - x_i) \geq y_c & c \in \mathcal{C} \\
& \quad y_c \in \{0, 1\} & c \in \mathcal{C} \\
& \quad x_i \in \{0, 1\} & i = 1, \ldots, n
\end{align*}
\]

And its linear programming relaxation:

\[
\begin{align*}
\text{max} & \quad \sum_{c \in \mathcal{C}} w_c y_c \\
\text{s.t.} & \quad \sum_{i \in c^+} x_i + \sum_{i \in c^-} (1 - x_i) \geq y_c & c \in \mathcal{C} \\
& \quad 0 \leq y_c \leq 1 & c \in \mathcal{C} \\
& \quad 0 \leq x_i \leq 1 & i = 1, \ldots, n
\end{align*}
\]

Randomized rounding:

1. Solve the LP relaxation. Let \((x^*, y^*)\) denote the optimal solution.

2. FOR \(i = 1 \) TO \(n \)

3. Independently set variable \(i \) to True with probability \(x_i^* \).

4. Output the resulting truth assignment.

Lemma 3. If \(c \) contains \(k \) literals, then

\[
E[W_c] \geq \left(1 - \left(1 - \frac{1}{k} \right)^k \right) w_c y_c^* .
\]

Proof:

• We may assume that \(c = (x_1 \lor \ldots \lor x_k) \).
• The probability that not all x_1, \ldots, x_k are set to False is

$$1 - \prod_{i=1}^{k}(1 - x_i^*) \geq 1 - \left(\frac{\sum_{i=1}^{k}(1 - x_i^*)}{k}\right)^k \quad (1)$$

$$= 1 - \left(1 - \frac{\sum_{i=1}^{k} x_i^*}{k}\right)^k \quad (2)$$

$$\geq 1 - \left(1 - \frac{y_c^*}{k}\right)^k \quad (3)$$

where (1) follows from the arithmetic-geometric mean inequality and (3) follows from the LP constraint.

Proof:
• The function $g(y) := 1 - \left(\frac{y}{k}\right)^k$ is concave.

• In addition, $g(0) = 0$ and $g(1) = 1 - \left(\frac{1}{k}\right)^k$.

• Therefore, for $y \in [0,1]$, $g(y) \geq \left(1 - \left(\frac{1}{k}\right)^k\right) y$.

• Hence, $\Pr[c \text{ is satisfied }] \geq \left(1 - \left(\frac{1}{k}\right)^k\right) y_c^*$.

Thus,

• Randomized rounding is a $\left(1 - \left(\frac{1}{k}\right)^k\right)$-approximation algorithm for MAX-kSAT.

• Randomized rounding is a $\left(1 - \frac{1}{\epsilon}\right)$-approximation algorithm for MAX-SAT.

<table>
<thead>
<tr>
<th>k</th>
<th>Simple algorithm</th>
<th>Randomized rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>3</td>
<td>0.875</td>
<td>0.704</td>
</tr>
<tr>
<td>4</td>
<td>0.938</td>
<td>0.684</td>
</tr>
<tr>
<td>5</td>
<td>0.969</td>
<td>0.672</td>
</tr>
</tbody>
</table>

Theorem 4. Given any instance of MAX-SAT, we run both algorithms and choose the better solution. The (expected) performance guarantee of the solution returned is $3/4$.

Proof:
• It suffices to show that $\frac{1}{2} (\mathbb{E}[W_c^1] + \mathbb{E}[W_c^2]) \geq \frac{3}{4} w_c y_c^*$.

• Assume that c has k clauses.

• By the first lemma, $\mathbb{E}[W_c^1] \geq \left(1 - 2^{-k}\right) w_c y_c^*$.

3
• By the second lemma, $\mathbb{E}[W_c^2] \geq \left(1 - \left(1 - \frac{1}{k}\right)^k\right) w_c y_c^*$.

• Hence, $\frac{1}{2} \left(\mathbb{E}[W_c^1] + \mathbb{E}[W_c^2]\right) \geq \frac{3}{4} w_c y_c^*$.

• Note that this argument also shows that the integrality gap is not worse than $3/4$.

• The following example shows that this is tight:

• Consider $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$.

• $x_i = 1/2$ and $y_c = 1$ for all i and c is an optimal LP solution.

• On the other hand, $\text{OPT} = 3$.

Bin Packing

Input: n items of size $a_1, \ldots, a_n \in (0, 1]$.

Output: A packing of items into unit-sized bins that minimizes the number of bins used.

Theorem 5. The Bin-Packing Problem is NP-complete.

Proof:

• Reduction from PARTITION:

Input: n numbers $b_1, \ldots, b_n \geq 0$.

?: Does there exist $S \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in S} b_i = \sum_{i \not\in S} b_i$?

• Define $a_i := \frac{2b_i}{\sum_{j=1}^n b_j}$, for $i = 1, \ldots, n$.

• Obviously, there exists a partition iff one can pack all items into two bins.

Corollary 6. There is no α-approximation algorithm for Bin Packing with $\alpha < 3/2$, unless $P = NP$.

First Fit:

• “Put the next item into the first bin where it fits. If it does not fit in any bin, open a new bin.”

• This is an obvious 2-approximation algorithm:
• If \(m \) bins are used, then at least \(m - 1 \) bins are more than half full. Therefore,

\[
\sum_{i=1}^{n} a_i > \frac{m-1}{2}.
\]

Since \(\sum_{i=1}^{n} a_i \) is a lower bound, \(m - 1 < 2 \cdot \text{OPT} \). The result follows.

Theorem 7. For any \(0 < \epsilon < 1/2 \), there is an algorithm that runs in time polynomial in \(n \) and finds a packing using at most \((1 + 2\epsilon)\text{OPT} + 1 \) bins.

Step 1:

Lemma 8. Let \(\epsilon > 0 \) and \(K \in \mathbb{Z}_+ \) be fixed. The bin-packing problem with items of size at least \(\epsilon \) and with at most \(K \) different item sizes can be solved in polynomial time.

Proof:

• Let the different item sizes be \(s_1, \ldots, s_l \), for some \(l \leq K \).

• Let \(b_i \) be the number of items of size \(s_i \).

• Let \(T_1, \ldots, T_N \) be all ways in which a single bin can be packed:

\[
\left\{ T_1, \ldots, T_N \right\} = \left\{ (k_1, \ldots, k_m) \in \mathbb{Z}_+^m : \sum_{i=1}^{m} k_i s_i \leq 1 \right\}.
\]

• We write \(T_j = (t_{j1}, \ldots, t_{jm}) \).

• Then bin packing is equivalent to the following IP:

\[
\begin{align*}
\min & \quad \sum_{j=1}^{N} x_j \\
\text{s.t.} & \quad \sum_{j=1}^{N} t_{ji} x_j \geq b_i & i = 1, \ldots, m \\
& \quad x_j \in \mathbb{Z}_+ & j = 1, \ldots, n
\end{align*}
\]

• Since \(N \) is constant (each bin fits at most \(1/\epsilon \) many items, and there are only \(K \) different item sizes), this is an IP in fixed dimension, which can be solved in polynomial time.

Step 2:

Lemma 9. Let \(\epsilon > 0 \) be fixed. The bin-packing problem with items of size at least \(\epsilon \) has a \((1 + \epsilon)\)-approximation algorithm.

Proof:

• Let \(I \) be the given instance. Sort the \(n \) items by nondecreasing size.
• Partition them into $K := \lceil 1/e^2 \rceil$ groups each having at most $Q := \lfloor n\epsilon^2 \rfloor$ items.

• Construct a new instance, J, by rounding up the size of each item to the size of the largest item in its group.

• Note that J has at most K different item sizes.

• By the previous lemma, we can find an optimal packing for J in polynomial time.

• Clearly, this packing is also feasible for the original item sizes.

• We construct another instance, J', by rounding down the size of each item to the size of the smallest item in its group.

• Clearly, $\text{OPT}(J') \leq \text{OPT}(I)$.

• Observe that a feasible packing for J' yields a feasible packing for all but the largest Q items of J.

• Therefore, $\text{OPT}(J) \leq \text{OPT}(J') + Q \leq \text{OPT}(I) + Q$.

• Since each item has size at least ϵ, $\text{OPT}(I) \geq n\epsilon$.

• Thus, $Q = \lfloor n\epsilon^2 \rfloor \leq \epsilon \text{OPT}(I)$.

\[\square \]

Step 3: Proof of the Theorem

• Let I' be the instance obtained by ignoring items of size $< \epsilon$.

• By the previous lemma, we can find a packing for I' using at most $(1 + \epsilon)\text{OPT}$ bins.

• We then pack the items of size $\leq \epsilon$ in a First-Fit manner into the bins opened for I'.

• If no additional bins are need, we are done.

• Otherwise, let M be the total number of bins used.

• Note that all but the last bin must be full to the extent of at least $1 - \epsilon$.

• Therefore, the sum of item sizes in I is at least $(M - 1)(1 - \epsilon)$.

• Since this is a lower bound on $\text{OPT}(I)$, we get

\[M \leq \frac{\text{OPT}(I)}{1 - \epsilon} + 1 \leq (1 + 2\epsilon)\text{OPT}(I) + 1. \]

\[\square \]
Performance Guarantees

- The absolute performance ratio for an approximation algorithm A for a minimization problem Π is given by
 \[R_A := \inf \{ r \geq 1 : \frac{A(I)}{\text{OPT}(I)} \leq r \text{ for all instances } I \in \Pi \}. \]

- The asymptotic performance ratio for an approximation algorithm A for a minimization problem Π is given by
 \[R_A^\infty := \inf \{ r \geq 1 : \text{for some } N \in \mathbb{Z}^+, \frac{A(I)}{\text{OPT}(I)} \leq r \text{ for all } I \in \Pi \text{ with } \text{OPT}(I) \geq N \}. \]

- The last theorem gives an APTAS (i.e., an asymptotic polynomial-time approximation scheme) for Bin Packing.