15.093: Optimization Methods

Lecture 12: Discrete Optimization
1 Todays Lecture
- Modeling with integer variables
- What is a good formulation?
- Theme: The Power of Formulations

2 Integer Optimization

2.1 Mixed IO

\[
\text{(MIO) } \max \quad c^t x + h^t y \\
\text{s.t.} \quad Ax + By \leq b \\
x \in \mathbb{Z}_+^n (x \geq 0, x \text{ integer}) \\
y \in \mathbb{R}_+^m (y \geq 0)
\]

2.2 Pure IO

\[
\text{(IO) } \max \quad c^t x \\
\text{s.t.} \quad Ax \leq b \\
x \in \mathbb{Z}_+^n
\]

Important special case: Binary Optimization

\[
\text{(BO) } \max \quad c^t x \\
\text{s.t.} \quad Ax \leq b \\
x \in \{0, 1\}^n
\]

2.3 LO

\[
\text{(LO) } \max \quad c^t x \\
\text{s.t.} \quad By \leq b \\
y \in \mathbb{R}_+^m
\]

3 Modeling with Binary Variables

3.1 Binary Choice

\[x \in \begin{cases}
1, & \text{if event occurs} \\
0, & \text{otherwise}
\end{cases}\]

Example 1: IO formulation of the knapsack problem

- \(n \): projects, total budget \(b \)
- \(a_j \): cost of project \(j \)
- \(c_j \): value of project \(j \)

\[x_j = \begin{cases}
1, & \text{if project } j \text{ is selected.} \\
0, & \text{otherwise.}
\end{cases}\]
\[
\begin{align*}
\max & \quad \sum_{j=1}^{n} c_j x_j \\
\text{s.t.} & \quad \sum_{j} a_j x_j \leq b \\
& \quad x_j \in \{0, 1\}
\end{align*}
\]

3.2 Modeling relations

- At most one event occurs
 \[
 \sum_{j} x_j \leq 1
 \]
- Neither or both events occur
 \[
 x_2 - x_1 = 0
 \]
- If one event occurs then, another occurs
 \[
 0 \leq x_2 \leq x_1
 \]
- If \(x = 0 \), then \(y = 0 \); if \(x = 1 \), then \(y \) is unconstrained
 \[
 0 \leq y \leq U x, \quad x \in \{0,1\}
 \]

3.3 The assignment problem

\[
\begin{align*}
\text{n} & \quad \text{people} \\
\text{m} & \quad \text{jobs} \\
c_{ij} & \quad \text{cost of assigning person } j \text{ to job } i. \\
x_{ij} & \begin{cases}
1 & \text{person } j \text{is assigned to job } i \\
0 & \end{cases} \\
\min & \quad \sum_{i,j} c_{ij} x_{ij} \\
\text{s.t.} & \quad \sum_{j} x_{ij} = 1 \quad \text{each job is assigned} \\
& \quad \sum_{i} x_{ij} \leq 1 \quad \text{each person can do at most one job.} \\
& \quad x_{ij} \in \{0,1\}
\end{align*}
\]

3.4 Multiple optimal solutions

- Generate all optimal solutions to a BOP.
 \[
 \begin{align*}
 \max & \quad c' x \\
 \text{s.t.} & \quad Ax \leq b \\
& \quad x \in \{0,1\}^n
 \end{align*}
 \]
- \(x^* \) optimal solution: \(I_0 = \{j : x_j^* = 0\}, \; I_1 = \{j : x_j^* = 1\} \).
• Add constraint
 \[\sum_{j \in l_n} x_j + \sum_{j \in l_i} (1 - x_j) \geq 1. \]

• Generate third best?
• Extensions to MIO?

4 What is a good formulation?

4.1 Facility Location

• Data
 \[N = \{1 \ldots n\} \quad \text{potential facility locations} \]
 \[I = \{1 \ldots m\} \quad \text{set of clients} \]
 \[c_j : \quad \text{cost of facility placed at } j \]
 \[h_{ij} : \quad \text{cost of satisfying client } i \text{ from facility } j. \]

• Decision variables
 \[x_j = \begin{cases} 1, & \text{a facility is placed at location } j \\ 0, & \text{otherwise} \end{cases} \]
 \[y_{ij} = \frac{\text{fraction of demand of client } i}{\text{satisfied by facility } j}. \]

\[IZ_1 = \min \sum_{j=1}^{n} c_j x_j + \sum_{i=1}^{m} \sum_{j=1}^{n} h_{ij} y_{ij} \]

\[\text{s.t. } \sum_{j=1}^{n} y_{ij} = 1 \]
\[y_{ij} \leq x_j \]
\[x_j \in \{0, 1\}, 0 \leq y_{ij} \leq 1. \]

Consider an alternative formulation.

\[IZ_2 = \min \sum_{j=1}^{n} c_j x_j + \sum_{i=1}^{m} \sum_{j=1}^{n} h_{ij} y_{ij} \]

\[\text{s.t. } \sum_{j=1}^{n} y_{ij} = 1 \]
\[\sum_{i=1}^{m} y_{ij} \leq m \cdot x_j \]
\[x_j \in \{0, 1\}, 0 \leq y_{ij} \leq 1. \]

Are both valid?
Which one is preferable?
4.2 Observations

- $IZ_1 = IZ_2$, since the integer points both formulations define are the same.

-

\[P_1 = \{ (x, y) : \sum_{j=1}^{n} y_{ij} = 1, y_{ij} \leq x_j, \quad 0 \leq x_j \leq 1 \} \]

\[P_2 = \{ (x, y) : \sum_{j=1}^{n} y_{ij} = 1, \sum_{i=1}^{m} y_{ij} \leq m \cdot x_j, \]

\[0 \leq x_j \leq 1 \} \]

- Let

\[Z_1 = \min cx + hy, \quad Z_2 = \min cx + hy \]

\[(x, y) \in P_1 \quad (x, y) \in P_2 \]

- $Z_2 \leq Z_1 \leq IZ_1 = IZ_2$

4.3 Implications

- Finding $IZ_1 (= IZ_2)$ is difficult.

- Solving to find Z_1, Z_2 is a LOP. Since Z_1 is closer to IZ_1 several methods (branch and bound) would work better (actually much better).

- Suppose that if we solve $\min cx + hy, (x, y) \in P_1$ we find an integral solution. Have we solved the facility location problem?

- Formulation 1 is better than Formulation 2. (Despite the fact that 1 has a larger number of constraints than 2.)

- What is then the criterion?

4.4 Ideal Formulations

- Let P be a linear relaxation for a problem

- Let

\[H = \{ (x, y) : x \in \{0, 1\}^n \} \cap P \]

- Consider Convex Hull (H)

\[= \{ x : x = \sum_{i} \lambda_i x^i, \sum_{i} \lambda_i = 1, \lambda_i \geq 0, x^i \in H \} \]
• The extreme points of $CH(H)$ have \{0, 1\} coordinates.
• So, if we know $CH(H)$ explicitly, then by solving $\min cx + hy, (x, y) \in CH(H)$ we solve the problem.
• Message: Quality of formulation is judged by closeness to $CH(H)$.

$$CH(H) \subseteq P_1 \subseteq P_2$$

5 Minimum Spanning Tree (MST)

• How do telephone companies bill you?
• It used to be that rate/minute: Boston \rightarrow LA proportional to distance in MST
• Other applications: Telecommunications, Transportation (good lower bound for TSP)

• Given a graph $G = (V, E)$ undirected and Costs \(c_e, e \in E\).
• Find a tree of minimum cost spanning all the nodes.
• Decision variables \(x_e = \begin{cases} 1, & \text{if edge } e \text{ is included in the tree} \\ 0, & \text{otherwise} \end{cases} \)

• The tree should be connected. How can you model this requirement?
• Let S be a set of vertices. Then S and $V \setminus S$ should be connected
• Let $\delta(S) = \{ e = (i, j) \in E : \begin{array}{c} i \in S \\ j \in V \setminus S \end{array} \}$
• Then, \(\sum_{e \in \delta(S)} x_e \geq 1\)
• What is the number of edges in a tree?
• Then, $\sum_{e \in E} x_e = n - 1$
5.1 Formulation

\[IZ_{MST} = \min \sum_{e \in E} c_e x_e \]
\[H \begin{cases}
 \sum_{e \in \delta(S)} x_e \geq 1 & \forall S \subseteq V, S \neq \emptyset, V \\
 \sum_{e \in E} x_e = n - 1 \\
 x_e \in \{0, 1\},
\end{cases} \]

Is this a good formulation?

\[P_{\text{cut}} = \{ x \in \mathbb{R}^{|E|} : 0 \leq x \leq e, \]
\[\sum_{e \in E} x_e = n - 1 \]
\[\sum_{e \in \delta(S)} x_e \geq 1 \forall S \subseteq V, S \neq \emptyset, V \}\]

Is \(P_{\text{cut}} \) the \(CH(H) \)?

5.2 What is \(CH(H) \)?

Let

\[P_{\text{sub}} = \{ x \in \mathbb{R}^{|E|} : \sum_{e \in E} x_e = n - 1 \]
\[\sum_{e \in \delta(S)} x_e \leq |S| - 1 \forall S \subseteq V, S \neq \emptyset, V \}\]

\[E(S) = \left\{ e = (i, j) : \begin{array}{l} i \in S \\ j \in S \end{array} \right\} \]

Why is this a valid IO formulation?

- Theorem: \(P_{\text{sub}} = CH(H) \).
- \(\Rightarrow P_{\text{sub}} \) is the best possible formulation.
- MESSAGE: Good formulations can have an exponential number of constraints.

6 The Traveling Salesman Problem

Given \(G = (V, E) \) an undirected graph. \(V = \{1, \ldots, n\} \), costs \(c_e \forall e \in E \). Find a tour that minimizes total length.
6.1 Formulation I
\[x_e = \begin{cases}
1, & \text{if edge } e \text{ is included in the tour.} \\
0, & \text{otherwise.}
\end{cases} \]

\[
\min \sum_{e \in E} c_e x_e \\
\text{s.t.} \sum_{e \in \delta(S)} x_e \geq 2, & S \subseteq E \\
\sum_{e \in \delta(i)} x_e = 2, & i \in V \\
x_e \in \{0, 1\}
\]

6.2 Formulation II

\[
\min \sum_{e \in E(S)} c_e x_e \\
\text{s.t.} \sum_{e \in \delta(S)} x_e \leq |S| - 1, & S \subseteq E \\
\sum_{e \in \delta(i)} x_e = 2, & i \in V \\
x_e \in \{0, 1\}
\]

\[P_{\text{cut}}^{\text{TSP}} = \{ x \in R^{|E|}; \sum_{e \in \delta(S)} x_e \geq 2, \sum_{e \in \delta(i)} x_e = 2 \]
\[P_{\text{sub}}^{\text{TSP}} = \{ x \in R^{|E|}; \sum_{e \in \delta(S)} x_e \geq 2, \sum_{e \in \delta(i)} x_e \leq |S| - 1 \]
\[0 \leq x_e \leq 1 \]

- Theorem: \(P_{\text{cut}}^{\text{TSP}} \neq P_{\text{sub}}^{\text{TSP}} \not\subset CH(H) \)
- Nobody knows \(CH(H) \) for the TSP

7 Minimum Matching

- Given \(G = (V, E); c_e \) costs on \(e \in E \). Find a matching of minimum cost.

- Formulation:
\[
\min \sum_{e \in \delta(i)} c_e x_e \\
\text{s.t.} \sum_{e \in \delta(i)} x_e = 1, & i \in V \\
x_e \in \{0, 1\}
\]

- Is the linear relaxation \(CH(H) \)?
Let

\[P_{MAT} = \{ x \in R^{|E|} : \sum_{e \in \delta(i)} x_e = 1 \]
\[\sum_{e \in \delta(S)} x_e \geq 1 \quad |S| = 2k + 1, S \neq \emptyset \]
\[x_e \geq 0 \} \]

Theorem: \(P_{MAT} = CH(H) \)

8 Observations

- For MST, Matching there are efficient algorithms. \(CH(H) \) is known.
- For TSP \(\beta \) efficient algorithm. TSP is an \(NP \) – hard problem. \(CH(H) \) is not known.
- Conjecture: The convex hull of problems that are polynomially solvable are explicitly known.

9 Summary

1. An IO formulation is better than another one if the polyhedra of their linear relaxations are closer to the convex hull of the IO.
2. A good formulation may have an exponential number of constraints.
3. Conjecture: Formulations characterize the complexity of problems. If a problem is solvable in polynomial time, then the convex hull of solutions is known.