15.093: Optimization Methods

Lecture 15: Heuristic Methods
1 Outline

- Approximation algorithms
- Local search methods
- Simulated annealing

2 Approximation algorithms

- Algorithm H is an ϵ-approximation algorithm for a minimization problem with optimal cost Z^*, if H runs in polynomial time, and returns a feasible solution with cost Z_H:

$$Z_H \leq (1 + \epsilon)Z^*$$

- For a maximization problem

$$Z_H \geq (1 - \epsilon)Z^*$$

2.1 TSP

2.1.1 MST-heuristic

- Triangle inequality

$$c_{ij} \leq c_{ik} + c_{kj}, \quad \forall i, k, j$$

- Find a minimum spanning tree with cost Z_T

- Construct a closed walk that starts at some node, visits all nodes, returns to the original node, and never uses an arc outside the minimal spanning tree

- Each arc of the spanning tree is used exactly twice

- Total cost of this walk is $2Z_T$

- Because of triangle inequality $Z_H \leq 2Z_T$

- But $Z_T \leq Z^*$, hence

$$Z_H \leq 2Z_T \leq 2Z^*$$

1-approximation algorithm
2.1.2 Matching heuristic

- Find a minimum spanning tree. Let Z_T be its cost
- Find the set of odd degree nodes. There is an even number of them. Why?
- Find the minimum matching among those nodes with cost Z_M
- Adding spanning tree and minimum matching creates a Eulerian graph, i.e., each node has even degree. Construct a closed walk
- Performance
 \[Z_H \leq Z_T + Z_M \leq Z^* + 1/2Z^* = 3/2Z^* \]

3 Local search methods

- Local Search: replaces current solution with a better solution by slight modification (searching in some neighbourhood) until a local optimal solution is obtained
- Recall the Simplex method

3.1 TSP-2OPT

- Two tours are neighbours if one can be obtained from the other by removing two edges and introducing two new edges

- Each tour has $O(n)$ neighbours. Search for better solution among its neighbourhood.
- Performance of 2-OPT on random Euclidean instances

<table>
<thead>
<tr>
<th>Size N</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
<th>100000</th>
<th>1000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matching</td>
<td>9.5</td>
<td>9.7</td>
<td>9.9</td>
<td>9.9</td>
<td>-</td>
</tr>
<tr>
<td>2OPT</td>
<td>4.5</td>
<td>4.9</td>
<td>5.0</td>
<td>4.9</td>
<td>4.9</td>
</tr>
</tbody>
</table>
3.2 Extensions

4 Extensions

- Iterated Local Search
- Large neighbourhoods (example 3-OPT)
- Simulated Annealing
- Tabu Search
- Genetic Algorithms

4.1 Large Neighbourhoods

- Within a small neighbourhood, the solution may be locally optimal. Maybe by looking at a bigger neighbourhood, we can find a better solution.
- Increase in computational complexity

4.1.1 TSP Again

3-OPT: Two tours are neighbour if one can be obtained from the other by removing three edges and introducing three new edges

3-OPT improves on 2-OPT performance, with corresponding increase in execution time. Improvement from 4-OPT turns out to be not that substantial compared to 3-OPT.

5 Simulated Annealing

- Allow the possibility of moving to an inferior solution, to avoid being trapped at local optimum
- Idea: Use of randomization
5.1 Algorithm

- Starting at x, select a random neighbour y in the neighbourhood structure with probability q_{xy}

$$q_{xy} \geq 0, \quad \sum_{y \in N(x)} q_{xy} = 1$$

- Move to y if $c(y) \leq c(x)$.
- If $c(y) > c(x)$, move to y with probability

$$\frac{e^{-(c(y) - c(x))/T}}{A},$$

stay in x otherwise.

- T is a positive constant, called temperature

5.2 Convergence

- We define a Markov chain.
- Under natural conditions, the long run probability of finding the chain at state x is given by

$$\frac{e^{-c(x)/T}}{A}$$

with $A = \sum_z e^{-c(z)/T}$

- If $T \to 0$, then almost all of the steady state probability is concentrated on states at which $c(x)$ is minimum.
- But if T is too small, it takes longer to escape from local optimal (accept an inferior move with probability $e^{-(c(y) - c(x))/T}$). Hence it takes much longer for the markov chain to converge to the steady state distribution.

5.3 Cooling schedules

- $T(t) = R/\log(t)$. Convergence guaranteed, but known to be slow empirically.

- Exponential Schedule: $T(t) = T(0)a^t$ with $a < 1$ and very close to 1 ($a=0.95$ or 0.99) commonly used.
5.4 Knapsack Problem

\[
\max \sum_{i=1}^{n} c_i x_i : \sum_{i=1}^{n} a_i x_i \leq b, \quad x_i \in \{0, 1\}
\]

Let \(X = (x_1, ..., x_n) \in \{0, 1\}^n \)

- Neighbourhood Structure: \(\mathcal{N}(X) = \{ Y \in \{0, 1\}^n : d(X, Y) = 1 \} \). Exactly one entry has been changed

Generate random \(Y = (y_1, ..., y_n) \):

- Choose \(j \) uniformly from \(1, 2, ..., n \).
- \(y_i = x_i \) if \(i \neq j \). \(y_j = 1 - x_j \).
- Accept if \(\sum_i a_i y_i \leq b \).

5.4.1 Example

- \(c =\{135, 139, 149, 150, 156, 163, 173, 184, 192, 201, 210, 214, 221, 229, 240\} \)
- \(a =\{70, 73, 77, 80, 82, 87, 90, 94, 98, 106, 110, 113, 115, 118, 120\} \)
- \(b = 750 \)
- \(X^* = (1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1), \) with value \(1458 \)

Cooling Schedule:

- \(T_0 = 1000 \)

- probability of accepting a downward move is between \(0.787 \) (\(c_i = 240 \)) and \(0.874 \) (\(c_i = 135 \)).

- Cooling Schedule: \(T(t) = aT(t-1) \), \(a = 0.999 \)

- Number of iterations: \(1000, 5000 \)

Performance:

- 1000 iterations: best solutions obtained in 10 runs vary from 1441 to 1454
- 5000 iterations: best solutions obtained in 10 runs vary from 1448 to 1456.