15.093 Optimization Methods

Lecture 16: Dynamic Programming
1 Outline

1. The knapsack problem
2. The traveling salesman problem
3. The general DP framework
4. Bellman equation
5. Optimal inventory control
6. Optimal trading
7. Multiplying matrices

2 The Knapsack problem

\[
\text{maximize } \sum_{j=1}^{n} c_j x_j \\
\text{subject to } \sum_{j=1}^{n} w_j x_j \leq K \\
x_j \in \{0,1\}
\]

Define

\[
C_i(w) = \text{maximize } \sum_{j=1}^{i} c_j x_j \\
\text{subject to } \sum_{j=1}^{i} w_j x_j \leq w \\
x_j \in \{0,1\}
\]

2.1 A DP Algorithm

- \(C_i(w)\): the maximum value that can be accumulated using some of the first \(i\) items subject to the constraint that the total accumulated weight is equal to \(w\)

- Recursion

\[
C_{i+1}(w) = \max \{ C_i(w), C_i(w - w_{i+1}) + c_{i+1} \}
\]

- By considering all states of the form \((i, w)\) with \(w \leq K\), algorithm has complexity \(O(nK)\)
3 The TSP

- $G = (V, A)$ directed graph with n nodes
- c_{ij} cost of arc (i, j)
- Approach: choice of a tour as a sequence of choices
- We start at node 1; then, at each stage, we choose which node to visit next.
- After a number of stages, we have visited a subset S of V and we are at a current node $k \in S$

3.1 A DP algorithm

- $C(S, k)$ be the minimum cost over all paths that start at node 1, visit all nodes in the set S exactly once, and end up at node k
- (S, k) a state; this state can be reached from any state of the form $(S \setminus \{k\}, m)$, with $m \in S \setminus \{k\}$, at a transition cost of c_{mk}
- Recursion

 $$C(S, k) = \min_{m \in S \setminus \{k\}} \left(C(S \setminus \{k\}, m) + c_{mk} \right), \quad k \in S$$

 $$C(\{1\}, 1) = 0.$$

- Length of an optimal tour is

 $$\min_k \left(C(\{1, \ldots, n\}, k) + c_{k1} \right)$$

- Complexity: $O(n^2 2^n)$ operations

4 Guidelines for constructing DP Algorithms

- View the choice of a feasible solution as a sequence of decisions occurring in stages, and so that the total cost is the sum of the costs of individual decisions.
- Define the state as a summary of all relevant past decisions.
- Determine which state transitions are possible. Let the cost of each state transition be the cost of the corresponding decision.
- Write a recursion on the optimal cost from the origin state to a destination state.

The most crucial step is usually the definition of a suitable state.
5 The general DP framework

- Discrete time dynamic system described by state x_k, k indexes time.
- u_k control to be selected at time k. $u_k \in U_k(x_k)$.
- w_k randomness at time k
- N time horizon
- Dynamics:
 \[x_{k+1} = f_k(x_k, u_k, w_k) \]
- Cost function: additive over time
 \[E \left(g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k, w_k) \right) \]

5.1 Inventory Control

- x_k stock available at the beginning of the kth period
- u_k stock ordered at the beginning of the kth period
- w_k demand during the kth period with given probability distribution. Excess demand is backlogged and filled as soon as additional inventory is available.
- Dynamics
 \[x_{k+1} = x_k + u_k - w_k \]
- Cost
 \[E \left(R(x_N) + \sum_{k=0}^{N-1} (r(x_k) + cu_k) \right) \]

6 The DP Algorithm

- Define $J_k(x_k)$ to be the expected optimal cost starting from stage k at state x_k.
- Bellman’s principle of optimality
 \[J_N(x_N) = g_N(x_N) \]
 \[J_k(x_k) = \min_{u_k \in U_k(x_k)} \left\{ g_k(x_k, u_k, w_k) + J_{k+1}(f_k(x_k, u_k, w_k)) \right\} \]
- Optimal expected cost for the overall problem: $J_0(x_0)$.

7 Inventory Control

- If \(r(x_k) = ax_k^2, w_k \sim N(\mu_k, \sigma_k^2) \), then
 \[
 u_k^* = c_kx_k + d_k, \quad J_k(x_k) = b_kx_k^2 + f_kx_k + e_k
 \]
- If \(r(x_k) = p\max(0, -x_k) + h\max(0, x_k) \), then there exist \(S_k \):
 \[
 u_k^* = \begin{cases}
 S_k - x_k & \text{if } x_k < S_k \\
 0 & \text{if } x_k \geq S_k
 \end{cases}
 \]

8 Optimal trading

- \(\overline{S} \) shares of a stock to be bought within a horizon \(T \).
- \(t = 1, 2, \ldots, T \) discrete trading periods.
- Control: \(S_t \) number of shares acquired in period \(t \) at price \(P_t, t = 1, 2, \ldots, T \)
- Objective:
 \[
 \min E \left[\sum_{t=1}^T P_t S_t \right], \quad \text{s.t. } \sum_{t=1}^T S_t = \overline{S}
 \]
- Dynamics:
 \[
 P_t = P_{t-1} + \alpha S_t + \epsilon_t
 \]
 where \(\alpha > 0, \epsilon_t \sim N(0,1) \)

8.1 DP ingredients

- State: \((P_{t-1}, W_t) \)
 \(P_{t-1} \) price realized at the previous period
 \(W_t \) # of shares remaining to be purchased
- Control: \(S_t \) number of shares purchased at time \(t \)
- Randomness: \(\epsilon_t \)
- Objective:
 \[
 \min E \left[\sum_{t=1}^T P_t S_t \right]
 \]
- Dynamics:
 \[
 P_t = P_{t-1} + \alpha S_t + \epsilon_t \quad W_t = W_{t-1} - S_{t-1}, \quad W_1 = \overline{S}, \quad W_{T+1} = 0
 \]
Note that \(W_{T+1} = 0 \) is equivalent to the constraint that \(\overline{S} \) must be executed by period \(T \)
8.2 The Bellman Equation

\[J_t(P_{t-1}, W_t) = \min_{S_t} E_t \left[P_t S_t + J_{t+1}(P_{t+1}) \right] \]

\[J_T(P_{T-1}, W_T) = \min_{S_T} E_T[P_T W_T] = (P_{T-1} + \alpha W_T) W_T \]

Since \(W_{T+1} = 0 \) \(\Rightarrow S_T^* = W_T \)

8.3 Solution

\[J_{T-1}(P_{T-2}, W_{T-1}) = \]

\[= \min_{S_{T-2}} E_{T-1} \left[P_{T-2} S_{T-2} + J_T(P_{T-1}, W_T) \right] \]

\[= \min_{S_{T-2}} E_{T-1} \left[(P_{T-2} + \alpha S_{T-2} + \epsilon_{T-1}) S_{T-2} + J_T \left(P_{T-2} + \alpha S_{T-2} + \epsilon_{T-1}, W_{T-1} - S_{T-2} \right) \right] \]

\[S_{T-1}^* = \frac{W_{T-1}}{2} \]

\[J_{T-1}(P_{T-2}, W_{T-1}) = W_{T-1}(P_{T-2} + \frac{3}{4} \alpha W_{T-1}) \]

Continuing in this fashion,

\[S_{T-k}^* = \frac{W_{T-k}}{k + 1} \]

\[J_{T-k}(P_{T-k-1}, W_{T-k}) = W_{T-k}(P_{T-k-1} + \frac{k + 2}{2(k + 1)} \alpha W_{T-k}) \]

\[S_1^* = \frac{S}{T} \]

\[J_1(P_0, W_1) = P_0 S + \frac{\alpha S^2}{2} \left(1 + \frac{1}{T} \right) \]

\[S_1^* = S_2^* = \cdots = S_T^* = \frac{S}{T} \]
8.4 Different Dynamics

\[
 P_t = P_{t-1} + \alpha S_t + \gamma X_t + \epsilon_t, \quad \alpha > 0
\]

\[
 X_t = \rho X_{t-1} + \eta_t, \quad X_1 = 1, \quad \rho \in (-1, 1)
\]

where \(\epsilon_t \sim N(0, \sigma^2) \) and \(\eta_t \sim N(0, \sigma^2) \)

8.5 Solution

\[
 S^*_T = \frac{W_{T-k}}{k+1} + \frac{\rho b_{k-1}}{2a_{k-1}} X_{T-k}
\]

\[
 J_{T-k}(P_{T-k-1}, X_{T-k}, W_{T-k}) = P_{T-k-1}W_{T-k} + a_k W^2_{T-k} + b_k X_{T-k}W_{T-k} + c_k X^2_{T-k} + d_k
\]

for \(k = 0, 1, \ldots, T - 1 \), where:

\[
 a_k = \frac{\alpha}{2} \left(1 + \frac{1}{k+1} \right), \quad a_0 = \alpha
\]

\[
 b_k = \gamma + \frac{\alpha \rho b_{k-1}}{2a_{k-1}}, \quad b_0 = \gamma
\]

\[
 c_k = \rho^2 c_{k-1} - \frac{\rho^2 b^2_{k-1}}{4a_{k-1}}, \quad c_0 = 0
\]

\[
 d_k = d_{k-1} + c_{k-1} \sigma^2, \quad d_0 = 0
\]

9 Matrix multiplication

- Matrices: \(M_k : n_k \times n_{k+1} \)
- Objective: Find \(M_1 \cdot M_2 \cdots M_N \)
- Example: \(M_1 \cdot M_2 \cdot M_3 \); \(M_1 : 1 \times 10, M_2 : 10 \times 1, M_3 : 1 \times 10 \).

\(M_1 (M_2 M_3) \) 200 multiplications;

\((M_1 M_2) M_3 \) 20 multiplications.

- What is the optimal order for performing the multiplication?
• $m(i, j)$ optimal number of scalar multiplications for multiplying $M_i \ldots M_j$.
• $m(i, i) = 0$
• For $i < j$:
 \[
m(i, j) = \min_{1 \leq k < j} (m(i, k) + m(k + 1, j) + n_k n_{k+1} n_{j+1})\]