Optimization Modelling and
Computational Issues in
Radiation Therapy

(lecture developed in collaboration with Peng Sun)

February 3, 2004
1 Outline

1. Radiation Therapy
2. Linear Optimization Models
3. Computation
4. Nonlinear and Mixed-Integer Models
5. Looking Ahead to the Course

2 Radiation Therapy

2.1 The Problem

2.2 Overview

• This year, 1,200,000 Americans will be diagnosed with cancer

• 600,000+ patients will receive radiation therapy
 – beam(s) of radiation delivered to the body in order to kill cancer cells

• Sadly, only 67% of “curable” patients will be cured

• High doses of radiation (energy/unit mass) can kill cells and/or prevent them from growing and dividing
 – true for cancer cells and normal cells

• Radiation is attractive because the repair mechanisms for cancer cells is less efficient than for normal cells

• Recent advances in radiation therapy now make it possible to:
 – map the cancerous region in greater detail
 – aim a larger number of different “beamlets” with greater specificity

• Spawned the new field of tomotherapy

2.2.1 Conventional Radiotherapy

Relative Intensity of Dose Delivered

- 3 to 7 beams of radiation
- Radiation oncologist and physicist work together to determine by manual “trial-and-error” process

With only a small number of beams, it is difficult/impossible to deliver required dose to tumor without impacting the critical area.
2.2.2 Recent Advances

- More accurate map of tumor area
 - CT — Computed Tomography
 - MRI — Magnetic Resonance Imaging

- More accurate delivery of radiation
 - IMRT: Intensity Modulated Radiation Therapy
 - Tomotherapy

2.2.3 Formal Problem Statement

- For a given tumor and given critical areas
- For a given set of possible beamlet origins and angles
- Determine the weight on each beamlet such that:
 - dosage over the tumor area will be at least a target level γ_L
 - dosage over the critical area will be at most a target level γ_U
3 Linear Optimization Models

3.1 Discretize the Space

Divide up region into a 2-dimensional (or 3-dimensional) grid of pixels.

![Pixel Grid](image)

3.2 Create Beamlet Data

Create the beamlet data for each of \(p = 1, \ldots, n \) possible beamlets.

\(D^p \) is the matrix of unit doses delivered by beam \(p \).

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\(D^p_{i, j} \) = unit dose delivered to pixel \((i, j)\) by beamlet \(p \).

3.3 Dosage Equations

Decision variables \(w = (w_1, \ldots, w_n) \)

\(w_p \) = intensity weight assigned to beamlet \(p \), \(p = 1, \ldots, n \).

\[
D_{i, j} := \sum_{p=1}^{n} D^p_{i, j} w_p
\]

("\(:= \)" denotes "by definition")

\[
D := \sum_{p=1}^{n} D^p w_p
\]

is the matrix of the integral dose (total delivered dose)
3.4 Definitions of Regions

\[\mathcal{T} \text{ is the target area} \]
\[\mathcal{C} \text{ is the critical area} \]
\[\mathcal{N} \text{ is normal tissue} \]
\[S := \mathcal{T} \cup \mathcal{C} \cup \mathcal{N} \]

3.5 Ideal Linear Model

\[
\begin{align*}
\text{minimize} & \quad \sum_{(i,j) \in S} D_{i,j} \\
\text{s.t.} & \quad D_{i,j} = \sum_{p=1}^{n} D_{i,j}^p w_p \quad (i, j) \in S \\
& \quad w \geq 0 \\
& \quad D_{i,j} \geq \gamma_L \quad (i, j) \in \mathcal{T} \\
& \quad D_{i,j} \leq \gamma_U \quad (i, j) \in \mathcal{C}
\end{align*}
\]

\[
\begin{align*}
\text{minimize} & \quad \sum_{(i,j) \in S} D_{i,j} \\
\text{s.t.} & \quad D_{i,j} = \sum_{p=1}^{n} D_{i,j}^p w_p \quad (i, j) \in S \\
& \quad w \geq 0 \\
& \quad D_{i,j} \geq \gamma_L \quad (i, j) \in \mathcal{T} \\
& \quad D_{i,j} \leq \gamma_U \quad (i, j) \in \mathcal{C}
\end{align*}
\]

- Unfortunately, this model is typically infeasible.
- Cannot deliver dose to tumor without some harm to critical area(s).
3.6 Engineered Approaches

minimize \(w, D \) \(\theta_T \sum_{i,j \in T} D_{i,j} + \theta_C \sum_{(i,j) \in C} D_{i,j} + \theta_N \sum_{(i,j) \in N} D_{i,j} \)

s.t. \(D_{i,j} = \sum_{p=1}^{n} D_{i,j}^p w_p \quad (i, j) \in \mathcal{S} \)

\[w \geq 0 \]

\[D_{i,j} \geq \gamma_{i,j} \quad (i, j) \in \mathcal{T} \]

\[w_m \leq 0.05 \sum_{p=1}^{n} w_p \quad m = 1, \ldots, n \]

Some other possible objective functions:

Let \((\text{Target}_{i,j})\) be the target prescribed dose to be delivered to pixel \((i, j)\)

minimize \(w, D \) \(\max_{(i,j) \in \mathcal{S}} |D_{i,j} - (\text{Target}_{i,j})| \)

s.t. \(D_{i,j} = \sum_{p=1}^{n} D_{i,j}^p w_p \quad (i, j) \in \mathcal{S} \)

\[w \geq 0 \]

This is the same as:

minimize \(w, D, \mu \) \(\mu \)

s.t. \(-\mu \leq D_{i,j} - (\text{Target}_{i,j}) \leq \mu \quad (i, j) \in \mathcal{S} \)

\[D_{i,j} = \sum_{p=1}^{n} D_{i,j}^p w_p \quad (i, j) \in \mathcal{S} \]

\[w \geq 0 \]

Here is another model:

minimize \(w, D \) \(\sum_{(i,j) \in \mathcal{S}} |D_{i,j} - (\text{Target}_{i,j})| \)

s.t. \(D_{i,j} = \sum_{p=1}^{n} D_{i,j}^p w_p \quad (i, j) \in \mathcal{S} \)

\[w \geq 0 \]
\[
\text{minimize } \sum_{(i,j) \in S} \Delta_{i,j}
\]

This is the same as:

s.t. \[D_{i,j} = \sum_{p=1}^{n} D_{ij}^p w_p \quad (i, j) \in S\]
\[w \geq 0\]
\[\Delta_{i,j} \leq D_{i,j} - \text{(Target)}_{i,j} \leq \Delta_{i,j} \quad (i, j) \in S\]

4 Computation

4.1 Base Case Model

Consider the “base case” example problem:

\[
\text{minimize } 1 \cdot \sum_{(i,j) \in N} \Delta_{i,j} + 100 \sum_{(i,j) \in C} \Delta_{i,j} + 30 \sum_{(i,j) \in T} \Delta_{i,j}
\]

s.t. \[D_{i,j} = \sum_{p=1}^{n} D_{ij}^p w_p \quad (i, j) \in S\]
\[w \geq 0\]
\[\Delta_{i,j} \leq D_{i,j} - \text{(Target)}_{i,j} \leq \Delta_{i,j} \quad (i, j) \in S\]

4.2 Size of the Model

4.2.1 Dimensional Analysis

\[
\text{minimize } 1 \cdot \sum_{(i,j) \in N} \Delta_{i,j} + 100 \sum_{(i,j) \in C} \Delta_{i,j} + 30 \sum_{(i,j) \in T} \Delta_{i,j}
\]

s.t. \[D_{i,j} = \sum_{p=1}^{n} D_{ij}^p w_p \quad (i, j) \in S\]
\[w \geq 0\]
\[\Delta_{i,j} \leq D_{i,j} - \text{(Target)}_{i,j} \leq \Delta_{i,j} \quad (i, j) \in S\]

Dimensional Analysis:

- number of pixels = 31,397 (≈ π * 100²)
- number of beamlets = 564 \((n)\)
- \(|T| = 3,859; \quad |C| = 630; \quad |N| = 26,908\)
- \(|S| = 31,397\)
\[
\begin{align*}
\text{minimize} \quad & \sum_{(i,j) \in E} \Delta_{ij} + 100 \sum_{(i,j) \in E} \Delta_{ij} + 30 \sum_{(i,j) \in T} \Delta_{ij} \\
\text{s.t.} \quad & D_{ij} = \sum_{p=1}^{n} D_{ij}^p w_p \quad (i,j) \in S \\
& w \geq 0 \\
& -\Delta_{ij} \leq D_{ij} - (\text{Target})_{ij} \leq \Delta_{ij} \quad (i,j) \in S
\end{align*}
\]

\[
\begin{array}{|c|c|}
\hline
\text{Decision Variables} & \text{Number} \\
\hline
D_{ij} & 31,397 \\
w & 664 \\
\Delta_{ij} & 31,397 \\
\text{Total} & 63,398 \\
\hline
\end{array}
\]

\[
\begin{align*}
\text{minimize} \quad & \sum_{(i,j) \in E} \Delta_{ij} + 100 \sum_{(i,j) \in E} \Delta_{ij} + 30 \sum_{(i,j) \in T} \Delta_{ij} \\
\text{s.t.} \quad & D_{ij} = \sum_{p=1}^{n} D_{ij}^p w_p \quad (i,j) \in S \\
& w \geq 0 \\
& -\Delta_{ij} \leq D_{ij} - (\text{Target})_{ij} \leq \Delta_{ij} \quad (i,j) \in S
\end{align*}
\]

4.2.2 Number of Constraints

<table>
<thead>
<tr>
<th>Simple Variable Upper/Lower Bounds</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>w ≥ 0</td>
<td>564</td>
</tr>
<tr>
<td>Total</td>
<td>564</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Constraints*</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{ij} =</td>
<td>31,397</td>
</tr>
<tr>
<td>≤ D_{ij} - (Target)_{ij} ≤</td>
<td>62,591</td>
</tr>
<tr>
<td>Total</td>
<td>94,191</td>
</tr>
</tbody>
</table>

*We usually exclude simple variable upper/lower bounds when counting constraints.

4.2.3 Summary

<table>
<thead>
<tr>
<th>Variables</th>
<th>Constraints*</th>
</tr>
</thead>
<tbody>
<tr>
<td>63,398</td>
<td>94,191</td>
</tr>
</tbody>
</table>

*Excludes variable upper/lower bounds.
4.3 Base Case Model

4.3.1 Optimal Solution

Base Case Model Solution

4.4 Another Model Solution

Solution of a nonlinear model.

4.5 Dose Histogram

4.5.1 of Solution

4.6 Another Model Solution

Solution of a nonlinear model, where $\theta_N = \theta_C = \theta_T = 1$.
5 Computation

5.1 Computational Issues

5.1.1 Software/Algorithms

- Software codes:
 - CPLEX simplex (pivoting method)
 - CPLEX barrier
 - LOQO

- Algorithms:
 - Simplex method ("pivoting" method)
 - Interior-point method (IPM) ("barrier" method)

5.1.2 Counting Iterations

- Iteration Counts:
 - Number of pivots for simplex method
 - Number of Newton steps for IPM

5.1.3 Issues in Running Times

- Running time will be affected by:
 - number of constraints
 - number of variables
 - software code
 - type of algorithm (simplex or IPM)
 - properties of linear algebra systems involved
 - density/patterns of nonzeros of matrix systems to be solved
 - other problem characteristics specific to problem
 - idiosyncratic influences
 - pre-processing heuristics

5.2 Base Case

5.2.1 No Pre-Processing

- Base Case Model
- No Pre-Processing
<table>
<thead>
<tr>
<th>Code</th>
<th>Algorithm</th>
<th>Iterations</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simplex</td>
<td>183,530</td>
<td>440</td>
</tr>
<tr>
<td>CPLEX</td>
<td>Barrier</td>
<td>49</td>
<td>13</td>
</tr>
</tbody>
</table>

5.3 Some Generic Rules

1. The simplex algorithm is designed to handle variables with lower bounds and upper bounds:

\[
\begin{align*}
\min_x & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad \ell \leq x \leq u
\end{align*}
\]

where \(\ell_j = -\infty \) and/or \(u_j = +\infty \) is allowed.

2. We say \(x_j \) has no bounds if \(\ell_j = -\infty \) and \(u_j = +\infty \). Otherwise \(x_j \) is a bounded variable.

3. For the simplex method, the work per pivot generally depends on the number of nonzeros in \(A \).

4. If \(A \) is very sparse (its density of nonzero elements is low), then the work per pivot will be low.

5. The number of simplex pivots in a “good” model is roughly between \(m \) and \(10n \).

\[
\begin{align*}
\min_x & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad \ell \leq x \leq u
\end{align*}
\]

6. The work per iteration of an interior-point method generally depends on the structure of the matrix \(K = \begin{pmatrix} I & A^T \\ A & 0 \end{pmatrix} \).

\[
K = \begin{pmatrix} I & A^T \\ A & 0 \end{pmatrix}.
\]

6. The structure of \(K \) is often (but not always) related to the structure of the matrix \(AA^T \) because the following two matrices are “similar”:

\[
K = \begin{pmatrix} I & A^T \\ A & 0 \end{pmatrix}, \quad P = \begin{pmatrix} I & A^T \\ 0 & -AA^T \end{pmatrix}.
\]

7. The number of interior-point method iterations is typically 25–80 (independent of \(m \) and/or \(n \)).
5.4 Pre-Processing

5.4.1 Heuristics

Pre-Processing Heuristics in Commercial-Grade Software

- Designed to Eliminate Constraints and/or Variables

- Example:

\[-5x + 3y + z = 17\]

\[0 \leq x \leq 4 \quad 0 \leq y \leq 2 \quad 10 \leq z \leq 40\]

- Example:

\[-5x + 3y + z = 17\]

\[0 \leq x \leq 4 \quad 0 \leq y \leq 2 \quad 10 \leq z \leq 40\]

- \(z = 17 + 5x - 3y \geq 17 + 5(0) - 3(2) = 11 \geq 10\)

- \(z = 17 + 5x - 3y \leq 17 + 5(4) - 3(0) = 37 \leq 40\)

- Therefore we can eliminate the bounds on \(z\)

- Therefore we can treat \(z\) as a free variable

- Therefore we can eliminate \(z\) from our model altogether.

- Base Case Model

- With Pre-Processing

<table>
<thead>
<tr>
<th>Code</th>
<th>Algorithm</th>
<th>Iterations</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPLEX</td>
<td>Simplex</td>
<td>18,428</td>
<td>4,3 4</td>
</tr>
<tr>
<td>CPLEX</td>
<td>Barrier</td>
<td>16</td>
<td>130 133</td>
</tr>
</tbody>
</table>

5.5 Equivalent Formulation

5.5.1 “Small” Model

“Small” Model:

Equivalent Formulation: (eliminate \(D_{ij}\))

\[
\begin{align*}
\text{minimize} & \quad w \cdot \Delta \\
\text{s.t.} & \quad -\Delta_{ij} \leq \sum_{p=1}^{n} D_{ij}^{p} w_{p} - \text{(Target)}_{ij} \leq \Delta_{ij} \\
& \quad (i, j) \in S \\
& \quad w \geq 0
\end{align*}
\]
<table>
<thead>
<tr>
<th></th>
<th>Base Case Model</th>
<th>Small Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>63,358</td>
<td>31,961</td>
</tr>
<tr>
<td>Constraints*</td>
<td>94,191</td>
<td>62,794</td>
</tr>
</tbody>
</table>

*always excludes simple variable upper/lower bounds

- Small Model

<table>
<thead>
<tr>
<th>Code</th>
<th>Algorithm</th>
<th>Iterations</th>
<th>CPU (sec)</th>
<th>Wall (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPLEX</td>
<td>Simplex</td>
<td>171,656</td>
<td>300</td>
<td>216</td>
</tr>
<tr>
<td>CPLEX</td>
<td>Barrier</td>
<td>57</td>
<td>80</td>
<td>31</td>
</tr>
</tbody>
</table>

5.6 Comparisons

<table>
<thead>
<tr>
<th>Code</th>
<th>Algorithm</th>
<th>Model</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Base Case</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Processed</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small Model</td>
<td>216</td>
</tr>
<tr>
<td>CPLEX</td>
<td>Simplex</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Base Case</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Processed</td>
<td>31</td>
</tr>
<tr>
<td>CPLEX</td>
<td>Barrier</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small Model</td>
<td></td>
</tr>
</tbody>
</table>

6 Nonlinear Optimization

6.1 Quadratic Model

\[
\begin{align*}
\text{QP:} \quad & \text{minimize} & & 1 \cdot \sum_{(i,j) \in \mathcal{N}} [D_{i,j} - \text{Target}_{i,j}]^2 \\
& & & + 100 \cdot \sum_{(i,j) \in \mathcal{C}} [D_{i,j} - \text{Target}_{i,j}]^2 \\
& & & + 30 \cdot \sum_{(i,j) \in \mathcal{T}} [D_{i,j} - \text{Target}_{i,j}]^2 \\
& \text{s.t.} & & D_{i,j} = \sum_{p=1}^{n} D_{i,j}^p w_p \quad (i, j) \in \mathcal{S} \\
& & & w \geq 0
\end{align*}
\]
6.1.1 Quadratic Model Output

6.2 Quadratic Model

6.2.1 Computational Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Code</th>
<th>Algorithm</th>
<th>Iterations</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Case QP Model</td>
<td>LOQO</td>
<td>Barrier</td>
<td>31</td>
<td>82.7</td>
</tr>
<tr>
<td>Small QP Model</td>
<td>LOQO</td>
<td>Barrier</td>
<td>32</td>
<td>149.0</td>
</tr>
</tbody>
</table>

7 Mixed Integer Optimization

7.1 Limiting the Number of Beamlets

\[
\begin{align*}
\text{minimize} & \quad 1 \cdot \sum_{(i,j) \in \mathcal{N}} \Delta_{ij} + 100 \sum_{(i,j) \in \mathcal{C}} \Delta_{ij} + 30 \sum_{(i,j) \in \mathcal{T}} \Delta_{ij} \\
\text{s.t.} & \quad D_{i,j} = \sum_{p=1}^{n} D_{i,j}^p w_p \quad (i,j) \in \mathcal{S} \\
& \quad w \geq 0 \\
& \quad -\Delta_{ij} \leq D_{i,j} - (\text{Target})_{i,j} \leq \Delta_{ij} \quad (i,j) \in \mathcal{S} \\
& \quad w_p \leq 100y_p \quad p = 1, \ldots, n \\
& \quad y_p \in \{0, 1\} \quad p = 1, \ldots, n \\
& \quad \sum_{p=1}^{n} y_p \leq 15.
\end{align*}
\]
7.2 Computation

7.2.1 CPLEX MIP Solver

<table>
<thead>
<tr>
<th>MIP Gap (%)</th>
<th>Simplex Pivots</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>11,666</td>
<td>7 seconds</td>
</tr>
<tr>
<td>15</td>
<td>11,686</td>
<td>7 seconds</td>
</tr>
<tr>
<td>12</td>
<td>11,696</td>
<td>5 minutes</td>
</tr>
<tr>
<td>10</td>
<td>14,538</td>
<td>9 minutes</td>
</tr>
<tr>
<td>7</td>
<td>14,538</td>
<td>7 minutes</td>
</tr>
<tr>
<td>5</td>
<td>14,538</td>
<td>10 minutes</td>
</tr>
<tr>
<td>4</td>
<td>14,538</td>
<td>7 minutes</td>
</tr>
<tr>
<td>3</td>
<td>14,538</td>
<td>5 minutes</td>
</tr>
<tr>
<td>2</td>
<td>3,655,445</td>
<td>17 hours</td>
</tr>
</tbody>
</table>

8 Modifications of the Model

8.1 Partial Volume Constraints

Partial Volume Constraints:

“No more than 20% of the critical region can exceed a
dose of $30G_y$.”

“No more than 5% of the critical region can exceed a
dose of $50G_y$.”

Approach #1 (Integer Programming Model)

Let M be a very large number,

\[
\begin{align*}
D_{i,j} &\leq 30 + M \cdot y_{i,j}, & y_{i,j} \in \{0, 1\}, & (i,j) \in \mathcal{C} \\
D_{i,j} &\leq 50 + M \cdot z_{i,j}, & z_{i,j} \in \{0, 1\}, & (i,j) \in \mathcal{C} \\
\sum_{(i,j) \in \mathcal{C}} y_{i,j} &\leq |\mathcal{C}| \times 0.20 \\
\sum_{(i,j) \in \mathcal{C}} z_{i,j} &\leq |\mathcal{C}| \times 0.05
\end{align*}
\]

Approach #2 (Error Function Approach)

The error function, or sigmoid function, is of the form:

\[
\text{err} f(x) = \frac{1}{1 + e^{-ax}}
\]

\[
\begin{align*}
\text{err} f(x) &= \frac{1}{2} \quad \text{at} \quad x = 0 \\
\text{err} f(x) &\to 1 \quad \text{as} \quad x \to \infty \\
\text{err} f(x) &\to 0 \quad \text{as} \quad x \to -\infty
\end{align*}
\]

Instead of integer variables, we use
\[
\sum_{(i,j) \in C} \text{err}(D_{ij} - 30) \leq |C| \times 0.20
\]
\[
\sum_{(i,j) \in C} \text{err}(D_{ij} - 50) \leq |C| \times 0.05
\]

9 Looking Ahead

9.1 Modeling Languages

9.1.1 Used in the Course

- Modeling languages and software used in the course
 - OPL Studio
 - linear and mixed-integer programming
 - solver is CPLEX simplex and/or CPLEX barrier
 - first half of course
 - AMPL
 - linear and nonlinear programming
 - solver is LOQO
 - second half of course

9.2 Modeling Tools

9.2.1 and Issues

- “Column Generation” (week 3)
 - generates new decision variables “on the fly”
- Exact optimization and exact feasibility
 - in models
 - in algorithms

- Computational Issues in LP (next lecture)
 - simplex method with upper/lower bounds
 - methods for updating the basis inverse