The Naïve Bayes algorithm comes from a generative model. There is an important distinction between generative and discriminative models. In all cases, we want to predict the label \(y \), given \(x \), that is, we want \(P(Y = y|X = x) \). Throughout the paper, we’ll remember that the probability distribution for measure \(P \) is over an unknown distribution over \(X \times Y \).

| Naïve Bayes Generative Model | Estimate \(P(X = x|Y = y) \) and \(P(Y = y) \) and use Bayes rule to get \(P(Y = y|X = x) \) |
|--------------------------------|--|
| Discriminative Model | Directly estimate \(P(Y = y|X = x) \) |

Most of the top 10 classification algorithms are discriminative (K-NN, CART, C4.5, SVM, AdaBoost).

For Naïve Bayes, we make an assumption that if we know the class label \(y \), then we know the mechanism (the random process) of how \(x \) is generated.

Naïve Bayes is great for very high dimensional problems because it makes a very strong assumption. Very high dimensional problems suffer from the curse of dimensionality – it’s difficult to understand what’s going on in a high dimensional space without tons of data.

Example: Constructing a spam filter. Each example is an email, each dimension “\(j \)” of vector \(x \) represents the presence of a word.
This \(\mathbf{x} \) represents an email containing the words “a” and “buy”, but not “aardvark” or “zyxt”. The size of the vocabulary could be \(\sim 50,000 \) words, so we are in a 50,000 dimensional space.

Naïve Bayes makes the assumption that the \(x^{(j)} \)'s are conditionally independent given \(y \). Say \(y = 1 \) means spam email, word 2,087 is “buy”, and word 39,831 is “price.” Naïve Bayes assumes that if \(y = 1 \) (it’s spam), then knowing \(x^{(2,087)} = 1 \) (email contains “buy”) won’t effect your belief about \(x^{(39,831)} \) (email contains “price”).

Note: This does not mean \(x^{(2,087)} \) and \(x^{(39,831)} \) are independent, that is,

\[
P(X^{(2,087)} = x^{(2,087)}) = P(X^{(2,087)} = x^{(2,087)} | X^{(39,831)} = x^{(39,831)}).
\]

It only means they are conditionally independent given \(y \). Using the definition of conditional probability recursively,

\[
P(X^{(1)} = x^{(1)}, \ldots, X^{(50,000)} = x^{(50,000)} | Y = y) = \]
\[
P(X^{(1)} = x^{(1)} | Y = y) P(X^{(2)} = x^{(2)} | Y = y, X^{(1)} = x^{(1)}) \]
\[
P(X^{(3)} = x^{(3)} | Y = y, X^{(1)} = x^{(1)}, X^{(2)} = x^{(2)}) \]
\[
\ldots P(X^{(50,000)} = x^{(50,000)} | Y = y, X^{(1)} = x^{(1)}, \ldots, X^{(49,999)} = x^{(49,999)}).
\]

The independence assumption gives:

\[
P(X^{(1)} = x^{(1)}, \ldots, X^{(n)} = x^{(n)} | Y = y) \]
\[
= P(X^{(1)} = x^{(1)} | Y = y) P(X^{(2)} = x^{(2)} | Y = y) \ldots P(X^{(n)} = x^{(n)} | Y = y) \]
\[
= \prod_{j=1}^{n} P(X^{(j)} = x^{(j)} | Y = y). \quad (1)
\]
Bayes rule says

\[
P(Y = y|X^{(1)} = x^{(1)}, \ldots, X^{(n)} = x^{(n)}) = \frac{P(Y = y)P(X^{(1)} = x^{(1)}, \ldots, X^{(n)} = x^{(n)}|Y = y)}{P(X^{(1)} = x^{(1)}, \ldots, X^{(n)} = x^{(n)})}
\]

so plugging in (1), we have

\[
P(Y = y|X^{(1)} = x^{(1)}, \ldots, X^{(n)} = x^{(n)}) = \frac{P(Y = y)\prod_{j=1}^{n} P(X^{(j)} = x^{(j)}|Y = y)}{P(X^{(1)} = x^{(1)}, \ldots, X^{(n)} = x^{(n)})}
\]

For a new test instance, called \(x_{\text{test}}\), we want to choose the most probable value of \(y\), that is

\[
y_{NB} \in \arg \max_{y} P(Y = \tilde{y}) \prod_{j} P(X^{(1)} = x_{\text{test}}^{(1)}, \ldots, X^{(n)} = x_{\text{test}}^{(n)}|Y = \tilde{y})
\]

\[
= \arg \max_{\tilde{y}} P(Y = \tilde{y}) \prod_{j=1}^{n} P(X^{(j)} = x^{(j)}|Y = \tilde{y}).
\]

So now, we just need \(P(Y = \tilde{y})\) for each possible \(\tilde{y}\), and \(P(X^{(j)} = x_{\text{test}}^{(j)}|Y = \tilde{y})\) for each \(j\) and \(\tilde{y}\). Of course we can’t compute those. Let’s use the empirical probability estimates:

\[
\hat{P}(Y = \tilde{y}) = \frac{\sum_{i} \mathbb{1}_{[y_i = \tilde{y}]} m}{m} = \text{fraction of data where the label is } \tilde{y}
\]

\[
\hat{P}(X^{(j)} = x_{\text{test}}^{(j)}|Y = \tilde{y}) = \frac{\sum_{i} \mathbb{1}_{[x_{i}^{(j)} = x_{\text{test}}^{(j)}, y_i = \tilde{y}]} m}{\sum_{i} m_{y_i = \tilde{y}}} = \text{Conf}(Y = \tilde{y} \rightarrow X^{(j)} = x_{\text{test}}^{(j)}).
\]

That’s the simplest version of Naïve Bayes:

\[
y_{NB} \in \arg \max_{\tilde{y}} \hat{P}(Y = \tilde{y}) \prod_{j=1}^{n} \hat{P}(X^{(j)} = x_{\text{test}}^{(j)}|Y = \tilde{y}).
\]

There could potentially be a problem that most of the conditional probabilities are 0 because the dimensionality of the data is very high compared to the amount of data. This causes a problem because if even one \(\hat{P}(X^{(j)} = x_{\text{test}}^{(j)}|Y = \tilde{y})\) is zero then the whole right side is zero. In other words, if no training examples from class “spam” have the word “tomato,” we’d never classify a test example containing the word “tomato” as spam!
To avoid this, we (sort of) set the probabilities to a small positive value when there are no data. In particular, we use a “Bayesian shrinkage estimate” of \(P(X^{(j)} = x_{\text{test}}^{(j)} | Y = \tilde{y}) \) where we add some hallucinated examples. There are \(K \) hallucinated examples spread evenly over the possible values of \(X^{(j)} \). \(K \) is the number of distinct values of \(X^{(j)} \). The probabilities are pulled toward \(1/K \). So, now we replace:

\[
\hat{P}(X^{(j)} = x_{\text{test}}^{(j)} | Y = \tilde{y}) = \frac{\sum_i \mathbb{1}[y_i = \tilde{y}]}{\sum_i \mathbb{1}[y_i = \tilde{y}] + K} + 1
\]

\[
\hat{P}(Y = \tilde{y}) = \frac{\sum_i \mathbb{1}[y_i = \tilde{y}] + 1}{m + K}
\]

This is called Laplace smoothing. The smoothing for \(\hat{P}(Y = \tilde{y}) \) is probably unnecessary and has little to no effect.

Naïve Bayes is not necessarily the best algorithm, but is a good first thing to try, and performs surprisingly well given its simplicity!

There are extensions to continuous data and other variations too.

\[\text{PPT Slides}\]