Las Vegas Algorithms for Linear (and Integer) Programming when the Dimension is Small

Kenneth L. Clarkson
presented by Susan Martonosi

September 29, 2003

Outline

- Applications of the algorithm
- Previous work
- Assumptions and notation
- Algorithm 1: “Recurrent Algorithm”
- Algorithm 2: “Iterative Algorithm”
- Algorithm 3: “Mixed Algorithm”
- Contribution of this paper to the field
Applications of the Algorithms

Algorithms give a bound that is “good” in n (number of constraints), but “bad” in d (dimension). So we require the problem to have a small dimension.

- **Chebyshev approximation:** fitting a function by a rational function where both the numerator and denominator have relatively small degree. The dimension is the sum of the degrees of the numerator and denominator.
- **Linear separability:** separating two sets of points in d-dimensional space by a hyperplane
- **Smallest enclosing circle problem:** find a circle of smallest radius that encloses points in d dimensional space
Previous work

- **Megiddo**: Deterministic algorithm for LP in $O(2^d n)$
- **Clarkson; Dyer**: $O(3^{d^2}n)$
- **Dyer and Frieze**: Randomized algo. with expected time no better than $O(d^{3d} n)$
- **This paper’s “mixed” algo.**: Expected time
 \[O(d^2 n) + (\log n)O(d)^{d/2+O(1)} + O(d^4 \sqrt{n} \log n) \]
as $n \to \infty$
Assumptions

- Minimize x_1 subject to $Ax \leq b$
- The polyhedron $\mathcal{F}(A, b)$ is non-empty and bounded and $0 \in \mathcal{F}(A, b)$
- The minimum we seek occurs at a unique point, which is a vertex of $\mathcal{F}(A, b)$
 - If a problem is bounded and has multiple optimal solutions with optimal value x_1^*, choose the one with the minimum Euclidean norm
 $$\min\{\|x\|_2 | x \in \mathcal{F}(A, b), x_1 = x_1^*\}$$
- Each vertex of $\mathcal{F}(A, b)$ is defined by d or fewer constraints
Let:

- H denote the set of constraints defined by A and b
- $\mathcal{O}(S)$ be the optimal value of the objective function for the LP defined on $S \subseteq H$
- “Each vertex of $\mathcal{F}(A, b)$ is defined by d or fewer constraints” implies that $\exists \mathcal{B}(H) \subset H$ of size d or less such that $\mathcal{O}(\mathcal{B}(H)) = \mathcal{O}(H)$. We call this subset $\mathcal{B}(H)$ the basis of H. All other constraints in $H \setminus \mathcal{B}(H)$ are redundant.
- a constraint $h \in H$ be called extreme if $\mathcal{O}(H \setminus h) < \mathcal{O}(H)$ (these are the constraints in $\mathcal{B}(H)$).
Algorithm 1: Recursive

- Try to eliminate redundant constraints
- Once our problem has a small number of constraints \((n \leq 9d^2)\), then use Simplex to solve it.
- Build up a smaller set of constraints that eventually include all of the extreme constraints and a small number of redundant constraints
 - Choose \(r = d\sqrt{n}\) unchosen constraints of \(H \setminus S\) at random
 - Recursively solve the problem on the subset of constraints, \(R \cup S\)
 - Determine which remaining constraints \((V)\) are violated by this optimal solution
 - Add \(V\) to \(S\) if it’s not too big (\(|V| \leq 2\sqrt{n}\)).
 - Otherwise, if \(V\) is too big, then pick \(r\) new constraints

We stop once \(V\) is empty: we’ve found a set \(S \cup R\) such that no other constraints in \(H\) are violated by its optimal solution. This optimal solution \(x\) is thus optimal for the original problem.
Recursive Algorithm

Input: A set of constraints \(H \). **Output:** The optimum \(\mathcal{B}(H) \)

1. \(S \leftarrow \emptyset; \ C_d \leftarrow 9d^2 \)
2. If \(n \leq C_d \) return Simplex\((H)\)
2.1 else repeat:
 - choose \(R \subset H \setminus S \) at random, with \(|R| = r = d\sqrt{n} \)
 - \(x \leftarrow \text{Recursive}(R \cup S) \)
 - \(V \leftarrow \{ h \in H \mid \text{vertex defined by } x \text{ violates } h \} \)
 - if \(|V| \leq 2\sqrt{n} \) then \(S \leftarrow S \cup V \)
 - until \(V = \emptyset \)
2.2 return \(x \)
Recursive Algorithm: Proof Roadmap

Questions:

- How do we know that S doesn’t get too large before it has all extreme constraints?
- How do we know we will find a set of violated constraints V that’s not too big (i.e. the loop terminates quickly)?

Roadmap:

Lemma 1. If the set V is nonempty, then it contains a constraint of $\mathcal{B}(H)$.

Lemma 2. Let $S \subseteq H$ and let $R \subseteq H \setminus S$ be a random subset of size r, with $|H \setminus S| = m$. Let $V \subseteq H$ be the set of constraints violated by $O(R \cup S)$. Then the expected size of V is no more than $\frac{d(m-r+1)}{r-d}$.

And we’ll use this to show the following Lemma:
Lemma 3. The probability that any given execution of the loop body is ”successful” ($|V| \leq 2\sqrt{n}$ for this recursive version of the algorithm) is at least $1/2$, and so on average, two executions or less are required to obtain a successful one.

This will leave us with a running time

$$T(n, d) \leq 2dT(3d\sqrt{n}, d) + O(d^2n) \text{ for } n > 9d^2.$$
Recursive Algorithm: Proof of Lemma 1

Proof. Lemma 1: When V is nonempty, it contains a constraint of $\mathcal{B}(H)$.

Suppose on the contrary that $V \neq \emptyset$ contains no constraints of $\mathcal{B}(H)$.

Let a point $x \preceq y$ if $(x_1, \|x\|_2) \xleftarrow{L} (y_1, \|y\|_2)$ (x is better than y).

Let $x^*(T)$ be the optimal solution over a set of constraints T. Then $x^*(R \cup S)$ satisfies all the constraints of $\mathcal{B}(H)$ (it is feasible), and thus $x^*(R \cup S) \succeq x^*(\mathcal{B}(H))$.

However, since $R \cup S \subset H$, we know that $x^*(R \cup S) \preceq x^*(H) = x^*(\mathcal{B}(H))$. Thus, $x^*(R \cup S)$ has the same obj. fcn value and norm as $x^*(\mathcal{B}(H))$. By the uniqueness of this point, $x^*(R \cup S) = x^*(\mathcal{B}(H)) = x^*(H)$, and $V = \emptyset$. Contradiction!

So, every time V is added to S, at least one extreme constraint of H is added (so we’ll do this at most d times).
Recursive Algorithm: Proof of Lemma 2

Proof. Lemma 2: The expected size of V is no more than $\frac{d(m-r+1)}{r-d}$.

First assume problem nondegenerate.

Let $C_H = \{x^*(T \cup S) | T \subseteq H \setminus S\}$, subset of optima.

Let $C_R = \{x^*(T \cup S) | T \subseteq R\}$

The call Recursive($R \cup S$) returns an element $x^*(R \cup S)$:

- an element of C_H
- unique element of C_R satisfying every constraint in R.
Recursive Algorithm: Proof of Lemma 2

Choose $x \in C_H$ and let $v_x =$ number of constraints in H violated by x.

$$E[|V|] = E[\sum_{x \in C_H} v_x I(x = x^*(R \cup S))] = \sum_{x \in C_H} v_x P_x$$

where

$$I(x = x^*(R \cup S)) = \begin{cases} 1 & \text{if } x = x^*(R \cup S) \\ 0 & \text{otherwise} \end{cases}$$

and $P_x = P(x = x^*(R \cup S))$

How to find P_x?
Recursive Algorithm: Proof of Lemma 2

Let $N =$ number of subsets of $H \setminus S$ of size r s.t. $x^*(\text{subset}) = x^*(R \cup S)$.

Then $N = \binom{m}{r} P_x$ and $P_x = \frac{N}{\binom{m}{r}}$.

To find N, note that $x^*(\text{subset}) \in \mathcal{C}_H$ and $x^*(\text{subset}) = x^*(R \cup S)$ only if

- $x^*(\text{subset}) \in \mathcal{C}_R$ as well
- $x^*(\text{subset})$ satisfies all constraints of R

Therefore, $N =$ No. of subsets of $H \setminus S$ of size r s.t. $x^*(\text{subset}) \in \mathcal{C}_R$ and $x^*(\text{subset})$ satisfies all constraints of R.
Recursive Algorithm: Proof of Lemma 2

For some such subset of $H\setminus S$ of size r and such that $x^*(\text{subset}) = x^*(R \cup S)$, let T be the *minimal* set of constraints such that $x^*(\text{subset}) = x^*(T \cup S)$.

- $x^*(\text{subset}) \in C_R$ implies $T \subseteq R$
- nondegeneracy implies T is unique and $|T| \leq d$

Let $i_x = |T|$.

In order to have $x^*(T \cup S) = x^*(R \cup S)$ (and thus $x^*(\text{subset}) = x^*(R \cup S)$), when constructing our subset we must choose:

- the i_x constraints of $T \subseteq R$
- $r - i_x$ constraints from $H\setminus S\setminus T\setminus V$
Therefore, $N = (\binom{m-vx-ix}{r-ix})$ and $P_x = \frac{(\binom{m-vx-ix}{r-ix})}{\binom{m}{r}} \leq \frac{m-r+1}{r-d} \frac{(\binom{m-vx-ix}{r-ix-1})}{\binom{m}{r}}$

$E[|V|] \leq \frac{m-r+1}{r-d} \sum_{x \in C_H} v_x \frac{(\binom{m-vx-ix}{r-ix-1})}{\binom{m}{r}} \leq d \frac{m-r+1}{r-d}$

(where the summand is $E[\text{No. of } x \in C_R \text{ violating exactly one constraint in } R] \leq d$)

For the degenerate case, we can perturb the vector b by adding $(\epsilon, \epsilon^2, \ldots, \epsilon^n)$ and show that the bound on $|V|$ holds for this perturbed problem, and that the perturbed problem has at least as many violated constraints as the original degenerate problem.

\square
Recursive Algorithm: Proof of Lemma 3

Proof. Lemma 3: $P(\text{successful execution}) \geq 1/2$; $E[\text{Executions til 1st success}] \leq 2$.

Here, $P(\text{unsuccessful execution}) = P(|V| > 2\sqrt{n})$

$2E[|V|] \leq 2d^{m-r+1} = 2^{n-d\sqrt{n}+1}$ (since $r = d\sqrt{n}) \leq 2\sqrt{n}$

So, $P(\text{unsuccessful execution}) = P(|V| > 2\sqrt{n}) \leq P(|V| > 2E[|V|]) \leq 1/2$, by the Markov Inequality.

$P(\text{successful execution}) \geq 1/2$, and the expected number of loops until our first successful execution is less than 2. \qed

\text{16}
Recursive Algorithm: Running Time

As long as $n > 9d^2$,

- Have at most $d + 1$ augmentations to S (successful iterations), with expected 2 tries until success
- With each success, S grows by at most $2\sqrt{n}$, since $|V| \leq 2\sqrt{n}$
- After each success, we run the Recursive algorithm on a problem of size $|S \cup R| \leq 2d\sqrt{n} + d\sqrt{n} = 3d\sqrt{n}$
- After each recursive call, we check for violated constraints, which takes $O(nd)$ each of at most $d + 1$ times

$$T(n, d) \leq 2(d + 1)T(3d\sqrt{n}, d) + O(d^2n), \text{ for } n > 9d^2$$
Algorithm 2: Iterative

- Doesn’t call itself, calls Simplex directly each time
- Associates weight w_h to each constraint which determines the probability with which it is selected
- Each time a constraint is violated, its weight is doubled
- Don’t add V to a set S; rather reselect R (of size $9d^2$) over and over until it includes the set $\mathcal{B}(H)$
Algorithm 2: Iterative

Input: A set of constraints H. **Output:** The optimum $\mathcal{B}(H)$

1. $\forall h \in H$, $w_h \leftarrow 1$; $C_d = 9d^2$
2. If $n \leq C_d$, return $\text{Simplex}(H)$
 2.1 else repeat:
 - choose $R \subset H$ at random, with $|R| = r = C_d$
 - $x \leftarrow \text{Simplex}(R)$
 - $V \leftarrow \{h \in H| \text{vertex defined by } x \text{ violates } h\}$
 - if $w(V) \leq 2 \frac{w(H)}{9d-1}$ then for $h \in V$, $w_h \leftarrow 2w_h$
 - until $V = \emptyset$
2.2 return x
Iterative Algorithm: Analysis

- Lemma 1: “If the set V is nonempty, then it contains a constraint of $\mathcal{B}(H)$” still holds (proof as above with $S = \emptyset$).

- Lemma 2: “Let $S \subseteq H$ and let $R \subseteq H \setminus S$ be a random subset of size r, with $|H \setminus S| = m$. Let $V \subseteq H$ be the set of constraints violated by $\mathcal{O}(R \cup S)$. Then the expected size of V is no more than $\frac{d(m-r+1)}{r-d}$,” still holds with the following changes. Consider each weight-doubling as the creation of multinodes. So “size” of a set is actually its weight. So we have $S = \emptyset$, and thus $|H \setminus S| = m = w(H)$. This gives us $E[w(V)] \leq \frac{d(w(H)-9d^2+1)}{9d^2-d} \leq \frac{w(H)}{9d-1}$

- Lemma 3: If we define a “successful iteration” to be $w(V) \leq 2\frac{w(H)}{9d-1}$, then Lemma 3 holds, and the probability that any given execution of the loop body is ”successful” is at least $1/2$, and so on average, two executions or less are required to obtain a successful one.
Iterative Algorithm: Running Time

The Iterative Algorithm runs in $O(d^2 n \log n) + (d \log n)O(d^{d/2+O(1)})$ expected time, as $n \to \infty$, where the constant factors do not depend on d.

First start by showing expected number of loop iterations $= O(d \log n)$

- By Lemma 3.1, at least one extreme constraint $h \in \mathcal{B}(H)$ is doubled during a successful iteration
- Let $d' = |\mathcal{B}(H)|$. After kd' successful executions $w(\mathcal{B}(H)) = \sum_{h \in \mathcal{B}(H)} 2^{n_h}$, where n_h is the number of times h entered V and thus $\sum_{h \in \mathcal{B}(H)} n_h \geq kd'$
- $\sum_{h \in \mathcal{B}(H)} w_h \geq \sum_{h \in \mathcal{B}(H)} 2^k = d'2^k$
- When members of V are doubled, increase in $w(H) = w(V) \leq \frac{2}{9d-1}$, so after kd' successful iterations, we have

$w(H) \leq n(1 + \frac{2}{9d-1})^{kd'} \leq ne^{\frac{2kd'}{9d-1}}$
• V sure to be empty when $w(B(H)) > w(H)$ (i.e. $P(\text{Choose } B(H)) > 1$). This gives us:

$$k > \frac{\ln(n/d')}{\ln 2 - \frac{2d}{9d-1}}, \text{ or } kd' = O(d \log n) \text{ successful iterations} = O(d \log n) \text{ iterations.}$$

Within a loop:

• Can select a sample R in $O(n)$ time [Vitter '84]
• Determining violated constraints, V, is $O(dn)$
• Simplex algorithm takes $d^{O(1)}$ time per vertex, times $\binom{2Cd}{\lfloor d/2 \rfloor}$ vertices [?]. Using Stirling’s approximation, this gives us $O(d)^{d/2+O(1)}$ for Simplex

Total running time:

$$O(d \log n) \times [O(dn) + O(d)^{d/2+O(1)}] = O(d^2 n \log n) + (d \log n)O(d)^{d/2+O(1)}$$
Algorithm 3: Mixed

- Follow the Recursive Algorithm, but rather than calling itself, call the Iterative Algorithm instead.
- Runtime of Recursive: $T(n, d) \leq 2(d + 1)T(3d\sqrt{n}, d) + O(d^2n)$, for $n > 9d^2$
- In place of $T(3d\sqrt{n})$, substitute in runtime of Iterative algorithm on $3d\sqrt{n}$ constraints.
- Runtime of Mixed Algorithm: $O(d^2n) + (d^2 \log n)O(d)^{d/2+O(1)} + O(d^4\sqrt{n} \log n)$
Contributions of this paper to the field

- Leading term in dependence on n is $O(d^2 n)$, an improvement over $O(d^{3d} n)$
- Algorithm can also be applied to integer programming (Jan’s talk)
- Algorithm was later applied as overlying algorithm to “incremental” algorithms (Jan’s talk) to give a sub-exponential bound for linear programming (rather than using Simplex once $n \leq 9d^2$, use an incremental algorithm)