Pure Adaptive Search In
Global Optimization
Z.Zabinsky & R.Smith

Michael Yee
Kwong-Meng Teo

1 Outline

- Extension to Discrete Optimization
 * Pure Adaptive Search for Finite Global Optimization
- Summary of other results leading from PAS
- Further comments

2 Pure Adaptive Search

2.1 Discrete Case

Consider:

\[
\min_{x} \quad f(x) \\
\text{s.t.} \quad x \in S
\]

where \(f(x) \in R \) and \(S \) is a finite set

- Strong PAS: domain with strictly improving cost: \(S = \{x : x \in S, f(x) < f(x_k)\} \)

- Weak PAS: domain with equal or improving cost: \(S = \{x : x \in S, f(x) \leq f(x_k)\} \)

Define:

- \(y_1 < y_2 < \cdots < y_K = y^* \) are all possible distinct objective values attained by \(x \in S \)
- \(\pi_j = P(f(x) = y_j), x \) is random sample from \(S \)
- \(p_j = \sum_{i=1}^{j} \pi_i \)

Given \(x_m, f(x_m) = y_k \), assume:

- Strong PAS:
 \[
P(f(x_{m+1}) = y_j) = \begin{cases}
\pi_j/p_{k-1}, & j < k; \\
0, & \text{o.w.}
\end{cases}
\]

- Weak PAS:
 \[
P(f(x_{m+1}) = y_j) = \begin{cases}
\pi_j/p_k, & j \leq k; \\
0, & \text{o.w.}
\end{cases}
\]

Theorem: The expected number of iterations to solve the finite optimization problem is:

(i) \(1 + \sum_{j=2}^{K} \pi_j/p_{j-1} \) for strong PAS and

(ii) \(1 + \sum_{j=2}^{K} \pi_j/p_{j-1} \) for weak PAS

Proof: Model stochastic process \(\{W_m = f(x_m) | m = 0, 1, \ldots\} \) as a Markov chain with states \(y_1, \ldots, y_K \), and \(\pi_i, p_i \) define the transition probabilities. Given initial probability distribution of \(W_0 = \pi \), derive expected number of transitions to converge to absorption state \(y_1 \).
Corollary: The expected number of strong PAS iterations to solve the finite optimization problem is bounded above by $1 + \log(\frac{1}{\pi_1})$

Proof:
$0 < x < 1 \Rightarrow x < -\log(1 - x)$
Therefore, $\pi_j/p_j < -\log(1 - \pi_j/p_j) = \log(p_j/p_{j-1})$
$\forall j = 2, \ldots, K$

Corollary: The expected number of iterations for finite global optimization, given a uniform distribution on the objective function values, is
(i) $\sum_{j=1}^{K} \frac{1}{j}$, bounded above by $1 + \log K$ for strong PAS and
(ii) $1 + \sum_{j=1}^{K-1} \frac{1}{j}$, bounded above by $2 + \log(K - 1)$ for weak PAS

Comparison to continuous case:
Consider $S = \{\text{vertices of } n\text{-dim lattice } \{1, \ldots, k\}^n\}$, each with unique objective functions.
Expected number of iterations is bounded by $2 + \log(K) = 2 + n\log(k)$ since $K = k^n$. Linear in n.

3 Summary of PAS results

- Polynomial time implementation of PAS for LP
 * Linear Optimization in Random Polynomial Time

- That there exists a polynomial time implementation for the PAS algorithm for most convex programming problems
 * Implementing PAS for Global Optimization using Markov Chain Sampling

4 Further Comments

Iteration k:
Step 1: Start with x_k
Step 2: Obtain sample of $x_{k+1} \sim U(S_k)$
Step 3: If stop criterion met, stop, else start $k + 1$

where
$S_k = \{x : x \in S \text{ and } f(x) < x_k\}$
5 Further Comments

5.1 Generalization

Iteration k:

Step 1: Start with x_k

Step 2: Obtain x_{k+1}' s.t. $E[x_{k+1}'] \leq E[x_{k+1}]$

Step 3: Let $x_{k+1} := x_{k+1}'$

Step 4: If stop criterion met, stop, else start $k + 1$

$x_k \sim U(S_k)$, $S_k = \{ x : x \in S \text{ and } f(x) < x_k \}$

6 Further Comments

6.1 wrt Interior Point Algo.

Iteration k:

Step 1: Start with x_k

Step 2: Obtain x_{k+1}' s.t. $E[x_{k+1}'] \leq E[x_{k+1}]$

Step 3: Let $x_{k+1} := x_{k+1}'$

Step 4: If stop criterion met, stop, else start $k + 1$

$x_k \sim U(S_k)$, $S_k = \{ x : x \in S \text{ and } f(x) < x_k \}$

Possible approach to explain empirical observations of number of iterations required by Interior Point Method?

7 Further Comments

Iteration k:

Step 1: Start with x_k

Step 2: Obtain sample of $x_{k+1} \sim U(S_k)$

Step 3: If stop criterion met, stop, else start $k + 1$

If we use information from x_k to find x_{k+1}, will we be limited to finding local optimum only?

- upper bound of minimum cost
- feasible direction and starting point
- moments at x_k

8 Final Comment!

Iteration k:

Step 1: Start with x_k

Step 2: Obtain sample of $x_{k+1} \sim U(S_k)$

Step 3: If stop criterion met, stop, else start $k + 1$
If we can find \(x_{k+1} \) without local information from \(x_k \), is it equivalent to finding a feasible point, if possible, of arbitrary objective function value?

Consider finding \(x_{k+1} \sim U(S'_k) \) where
\[
S'_k = \{ x : x \in S, \ f(x) > x_k - \epsilon, \ f(x) < x_k + \epsilon \}
\]