Lectures 10–11: Options
Critical Concepts

- Motivation
- Payoff Diagrams
- Payoff Tables
- Option Strategies
- Other Option-Like Securities
- Valuation of Options
- A Brief History of Option-Pricing Theory
- Extensions and Qualifications

Readings:
- Brealey, Myers, and Allen Chapters 27
Motivation

Derivative: Claim Whose Payoff is a Function of Another's
- Warrants, Options
- Calls vs. Puts
- American vs. European
- Terms: Strike Price K, Time to Maturity τ

\[S_t = \text{Stock Price}, \quad K = \text{Strike Price} \]
\[C_t = \text{Call Price}, \quad P_t = \text{Put Price} \]

- At Maturity T, payoff

\[C_T = \max [0, S_T - K] \]
\[P_T = \max [0, K - S_T] \]
Motivation

Put Options As Insurance

- Asset Insured = Stock
- Current Asset Value =
- Term of Policy =
- Maximum Coverage =
- Deductible =
- Insurance Premium =

Differences
- Early exercise
- Marketability
- Dividends
Payoff Diagrams

Call Option:

Payoff / profit, $

Stock price

© 2007–2008 by Andrew W. Lo
Payoff Diagrams

Stock Return vs. Call Option Return

-133% -100% -67% -33% 0% 33% 67% 100% 133%

30 34 38 42 46 50 54 58 62 66 70
Put Option:

Payoff Diagrams

Stock price

Payoff / profit, $
Payoff Diagrams

- Long Call
- Long Put
- Short Call
- Short Put
Payoff Tables

Stock Price = S, Strike Price = X

Call option (price = C)

<table>
<thead>
<tr>
<th>Condition</th>
<th>if S < X</th>
<th>if S = X</th>
<th>if S > X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payoff</td>
<td>0</td>
<td>0</td>
<td>S – X</td>
</tr>
<tr>
<td>Profit</td>
<td>–C</td>
<td>–C</td>
<td>S – X – C</td>
</tr>
</tbody>
</table>

Put option (price = P)

<table>
<thead>
<tr>
<th>Condition</th>
<th>if S < X</th>
<th>if S = X</th>
<th>if S > X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payoff</td>
<td>X – S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Profit</td>
<td>X – S – P</td>
<td>–P</td>
<td>–P</td>
</tr>
</tbody>
</table>
Option Strategies

Trading strategies

Options can be combined in various ways to create an unlimited number of payoff profiles.

Examples

- Buy a stock and a put
- Buy a call with one strike price and sell a call with another
- Buy a call and a put with the same strike price
Option Strategies

Stock + Put

Buy stock

Buy a put

Stock + put
Option Strategies

Call1 - Call2

Buy call with $X = 50$

Write call with $X = 60$

$Call_1 - Call_2$
Option Strategies

Call + Put

Buy call with $X = 50$

Buy put with $X = 50$

Call + Put
Corporate Liabilities:

Equity \equiv \max [0, V-B] \equiv E
= V - B + \max [0, B-V]

Debt \equiv \min [V, B] \equiv D
= B - \max [0, B-V]

V = D + E

- Equity: hold call, or protected levered put
- Debt: issue put and (riskless) lending
- Quantifies Compensation Incentive Problems:
 - Biased towards higher risk
 - Can overwhelm NPV considerations
 - Example: leveraged equity
Other Option-Like Securities

Other Examples of Derivative Securities:

- Asian or “Look Back” Options
- Callables, Convertibles
- Futures, Forwards
- Swaps, Caps, Floors
- Real Investment Opportunities
- Patents
- Tenure
- etc.
Valuation of Options

Binomial Option-Pricing Model of Cox, Ross, and Rubinstein (1979):

- Consider One-Period Call Option On Stock XYZ
- Current Stock Price S_0
- Strike Price K
- Option Expires Tomorrow, $C_1 = \max (S_1 - K, 0)$
- What Is Today’s Option Price C_0?

\[S_0, C_0 = ??? \quad \quad \quad S_1, C_1 = \max (S_1 - K, 0) \]
Valuation of Options

Suppose $S_0 \rightarrow S_1$ is a Bernoulli trial:

- $p \rightarrow uS_0$
- $1-p \rightarrow dS_0$

S_1

$u > d$

C_1

$p \rightarrow \text{Max} \left[uS_0 - K, 0 \right] = C_u$

$1-p \rightarrow \text{Max} \left[dS_0 - K, 0 \right] = C_d$
Now What Should $C_0 = f(\cdot)$ Depend On?

- Parameters: S_0, K, u, d, p, r

Consider Portfolio of Stocks and Bonds Today:

- Δ Shares of Stock, B of Bonds
- Total Cost Today: $V_0 = S_0\Delta + B$
- Payoff V_1 Tomorrow:

\[
\begin{align*}
V_1 & \xrightarrow{p} uS_0\Delta + rB \\
V_1 & \xleftarrow{1-p} dS_0\Delta + rB
\end{align*}
\]
Valuation of Options

Now Choose Δ and B So That:

$$
\begin{align*}
V_1 \xrightarrow{p} uS_0\Delta + rB &= C_u \\
1-p \xrightarrow{d} dS_0\Delta + rB &= C_d
\end{align*}
\Rightarrow
\begin{align*}
\Delta^* &= \frac{(C_u - C_d)/(u - d)S_0}{r} \\
B^* &= \frac{(uC_d - dC_u)/(u - d)r}{r}
\end{align*}
$$

Then It Must Follow That:

$$
C_0 = V_0 = S_0 \Delta^* + B^* = \frac{1}{r} \left(\frac{r - d}{u - d} C_u + \frac{u - r}{u - d} C_d \right)
$$
Valuation of Options

Suppose $C_0 > V_0$
- Today: Sell C_0, Buy V_0, Receive $C_0 - V_0 > 0$
- Tomorrow: Owe C_1, But V_1 Is Equal To C_1!

Suppose $C_0 < V_0$
- Today: Buy C_0, Sell V_0, Receive $V_0 - C_0 > 0$
- Tomorrow: Owe V_1, But C_1 Is Equal To V_1!

$C_0 = V_0$, Otherwise Arbitrage Exists

$$C_0 = V_0 = S_0 \Delta^* + B^* = \frac{1}{r} \left[\frac{r - d}{u - d} C_u + \frac{u - r}{u - d} C_d \right]$$
Valuation of Options

Note That p Does Not Appear Anywhere!

- Can disagree on p, but must agree on option price
- If price violates this relation, arbitrage!
- A multi-period generalization exists:

\[C_0 = \frac{1}{r^n} \sum_{k=0}^{n} \binom{n}{k} p^k (1-p^k)^{n-k} \text{Max}[0, u^k d^{n-k} S_0 - K] \]

\[p^* = \frac{r - d}{u - d} \]

- Continuous-time/continuous-state version (Black-Scholes/Merton):

\[\frac{1}{2} \sigma^2 S^2 \frac{\partial^2 C}{\partial S^2} + rS \frac{\partial C}{\partial S} + \frac{\partial C}{\partial t} = rC \]

\[C(S, T) = \text{Max} [S - K, 0] \]

\[C(0, t) = 0 \]
A Brief History of Option-Pricing Theory

Earliest Model of Asset Prices:

- Notion of “fair” game
- The **martingale**
- Cardano’s (c.1565) *Liber De Ludo Aleae*:

 The most fundamental principle of all in gambling is simply equal conditions, e.g. of opponents, of bystanders, of money, of situation, of the dice box, and of the die itself. To the extent to which you depart from that equality, if it is in your opponent's favor, you are a fool, and if in your own, you are unjust.

- Precursor of the **Random Walk Hypothesis**
A Brief History of Option-Pricing Theory

Louis Bachelier (1870–1946):
- *Théorie de la Spéculation* (1900)
- First mathematical model of Brownian motion
- Modelled warrant prices on Paris Bourse

\[
\frac{1}{c} \frac{\partial P}{\partial t} - \frac{\partial^2 P}{\partial x^2} = 0
\]

- Poincaré’s evaluation of Bachelier:
 The manner in which the candidate obtains the law of Gauss is most original, and all the more interesting as the same reasoning might, with a few changes, be extended to the theory of errors. He develops this in a chapter which might at first seem strange, for he titles it “Radiation of Probability”. In effect, the author resorts to a comparison with the analytical theory of the propagation of heat. A little reflection shows that the analogy is real and the comparison legitimate. Fourier’s reasoning is applicable almost without change to this problem, which is so different from that for which it had been created. It is regrettable that [the author] did not develop this part of his thesis further.
A Brief History of Option-Pricing Theory

Kruizenga (1956):
- MIT Ph.D. Student (Samuelson)
- “Put and Call Options: A Theoretical and Market Analysis”

Sprenkle (1961):
- Yale Ph.D. student (Okun, Tobin)
- “Warrant Prices As Indicators of Expectations and Preferences”

What Is The “Value” of Max \[S_T - K , 0 \]?
- Assume probability law for \(S_T \)
- Calculate \(E_t [\text{Max} [S_T - K , 0]] \)
- But what is its \textit{price}?
- Do risk preferences matter?
A Brief History of Option-Pricing Theory

Samuelson (1965):
- “Rational Theory of Warrant Pricing”
- “Appendix: A Free Boundary Problem for the Heat Equation Arising from a Problem in Mathematical Economics”, H.P. McKean

Samuelson and Merton (1969):
- “A Complete Model of Warrant Pricing that Maximizes Utility”
- Uses preferences to value expected payoff

Black and Scholes (1973):
- Construct portfolio of options and stock
- Eliminate market risk (appeal to CAPM)
- Remaining risk is inconsequential (idiosyncratic)
- Expected return given by CAPM (PDE)
A Brief History of Option-Pricing Theory

Merton (1973):

- Use continuous-time framework
 - Construct portfolio of options and stock
 - Eliminate market risk (dynamically)
 - Eliminate idiosyncratic risk (dynamically)
 - Zero payoff at maturity
 - No risk, zero payoff \Rightarrow zero cost (otherwise arbitrage)
 - Same PDE

- More importantly, a “production process” for derivatives!

- Formed the basis of financial engineering and three distinct industries:
 - Listed options
 - OTC structured products
 - Credit derivatives
A Brief History of Option-Pricing Theory

The Rest Is Financial History:

Photographs removed due to copyright restrictions.
Extensions and Qualifications

- The derivatives pricing literature is HUGE
- The mathematical tools involved can be quite challenging
- Recent areas of innovation include:
 - Empirical methods in estimating option pricings
 - Non-parametric option-pricing models
 - Models of credit derivatives
 - Structured products with hedge funds as the underlying
 - New methods for managing the risks of derivatives
 - Quasi-Monte-Carlo methods for simulation estimators
- Computational demands can be quite significant
- This is considered “rocket science”
Key Points

- Options have nonlinear payoffs, as diagrams show
- Some options can be viewed as insurance contracts
- Option strategies allow investors to take more sophisticated bets
- Valuation is typically derived via arbitrage arguments (e.g., binomial)
- Option-pricing models have a long and illustrious history

