Valuation
Free Cash Flows

Katharina Lewellen
Finance Theory II
April 2, 2003
Valuation Tools

- A key task of managers is to undertake valuation exercises in order to allocate capital between mutually exclusive projects:
 - Is project A better than doing nothing?
 - Is project A better than project B?
 - Is the project’s version A than its modified version A’?

- The process of valuation and ultimately of capital budgeting generally involves many factors, some formal, some not (experience, hard-to-formalize information, politics, etc.).

- We will focus on financial tools for valuation.
Valuation Tools (cont.)

- These tools provide managers with numerical techniques to “keep score” and assist in the decision-making process.

- They build on modern finance theory and deal with cash flows, time, and risk.

- All rely on (often highly) simplified models of the business:
 - Technical limitations (less now with computers)
 - Versatility
 - Understandable and discussible
How to Value a Project/Firm?

- **Calculate NPV**
 - Estimate the expected cash-flows
 - Estimate the appropriate discount rate for each cash flow
 - Calculate NPV

- **Look up the price of a comparable project**

- **Use alternative criteria (e.g., IRR, payback method)**
 - You need to be an educated user of these
Comparables method

- Suppose you want to value a private company going public
 - EBITDA = $100 million
 - For a similar public company P/E = 10
 - You value the IPO company at $1,000 million

- What are the implicit assumptions?
 - Suppose that $P = \frac{E}{(r - g)}$
 - Then, $P/E = \frac{1}{(r - g)}$
 - Thus, we assume that
 - Earnings are expected to grow in perpetuity at a constant rate
 - Growth rates and discount rates are the same for both firms
Internal Rate of Return (IRR)

- **One-period project**
 - Investment = 100 at time 0 Payoff = 150 at time 1
 - Rate of return = $\frac{150}{100} - 1 = 50\%$
 - NPV = $-100 + \frac{150}{\text{discount rate}} = 0$
 - Discount rate = $\frac{150}{100} = 50\%$
 - Rate of return is the discount rate that makes NPV = 0

- **Multiple period projects**
 - IRR is the discount rate that makes NPV = 0
 - $\text{NPV} = I_0 + \frac{C_1}{1 + \text{IRR}} + \frac{C_2}{(1 + \text{IRR})^2} + ... + \frac{C_T}{(1 + \text{IRR})^T} = 0$

Basic rule: Choose projects with IRR > opportunity costs of capital
Internal Rate of Return (IRR), cont.

- Suppose you choose among two mutually exclusive projects
 - E.g., alternative ways to use a particular piece of land
 - Project 1: cash flows -10 +20 IRR=100%
 - Project 2: cash flows: -20 +35 IRR=75%
 - Which project would you choose? (costs of capital = 10%)
 - Project 2 because it has a higher NPV

- Other pitfalls (BM, Chapter 5)
 - E.g., multiple IRR, lending vs. borrowing.

- Bottom line
 - NPV is easier to use than IRR
 - If used properly, IRR should give you the same answer as NPV
1. Calculating Cash Flows
The Free Cash Flow (FCF) Approach

- **FCF**: The expected after tax cash flows of an *all equity firm*
 - These cash flows ignore the tax savings the firm gets from debt financing (the deductibility of interest expense)

- **Plan of Attack:**
 - Step 1: Estimating the Free Cash Flows
 - Step 2: Account for the effect of financing on value

- **Preview: Two ways to account for tax shield:**
 - Adjust the discount rate (WACC method).
 - Adjust the cash-flow estimate (APV method).
Count *all* incremental, *after-tax* cash flows allowing for reasonable *inflation*.

All:
- Don’t just look at operating profits in the out years.
- If project requires follow-on CAPX or additional working capital, take these into account.

After-tax: The rest goes to the IRS.

Be consistent in your treatment of inflation:
- Discount nominal cash flows at nominal discount rates.
- Reasons:
 - Nominal rates reflect inflation in overall economy, but inflation in cash flows may be different.
 - In fact, some items in cash flows, e.g., depreciation, may have no inflation.
Treatment of Inflation - Example

- T-Bill rate (nominal) = 8%
- Expected inflation rate = 6%
- Expected real rate = $1.08/1.06 = 1.9$

- Sales of widgets next year = $100 measured in today’s dollars
- You expect that the price of the widgets will go up by 6%
- What’s the PV of the widgets?

 nominal cash flows: \[PV = \frac{100 \times 1.06}{1.08} = 98.2 \]

 real cash flows: \[PV = \frac{100}{1.08/1.06} = 98.2 \]
Equivalent Expressions for Free Cash Flows (see Finance Theory I)

FCF = (1 – t) \times EBIT + \text{Depreciation} - \text{CAPX} - \text{Change in NWC}

FCF = (1 – t) \times EBITD + t \times \text{Depreciation} - \text{CAPX} - \text{Change in NWC}

FCF = (1 – t) \times EBIT - \text{Change in Net Assets}

\textbf{Note:}
EBIT = \text{Earnings before interest and taxes}
EBITD = \text{Earnings before interest and taxes and depreciation} = EBIT + \text{Depreciation}
Change in NWC is sometimes called Investment in NWC.
Example of Free Cash Flow Calculation

<table>
<thead>
<tr>
<th></th>
<th>1998</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>1,000</td>
<td>1,200</td>
</tr>
<tr>
<td>Cost of Goods Sold</td>
<td>700</td>
<td>850</td>
</tr>
<tr>
<td>Depreciation</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Interest Expense</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Taxes (38%)</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Profit After taxes</td>
<td>150</td>
<td>175</td>
</tr>
<tr>
<td>Capital Expenditures</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Accounts Receivable</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Inventories</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Accounts Payable</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

In 1999: FCF = EBIT*(1-t) + Depreciation - CAPX - Change in NWC
EBIT = 1,200 - 850 - 35 = 315; Ch. NWC = (60+60-25) - (50+50-20) = 15
FCF = 315 * (1-.38) + 35 - 40 - 15 = 175.3
Beware!

- **Note:**
 - We ignored interest payments
 - We computed taxes on EBIT

- Do not take the effect of financing (e.g., interest) into account at this stage.

- Remember our plan:
 - First, determine the expected cash-flows as if the project were 100% equity financed.
 - Later, we will adjust for financing.

- If you count financing costs in cash-flow, you count them twice.
TW Example

- XYZ, a profitable widget producer ($100M annual after-tax profit) contemplates introducing new Turbo Widgets (TWs), developed in its labs at an R&D cost of $1M over the past 3 years.

- New plant to produce TW would
 - cost $20M today
 - last 10 years with salvage value of $5M
 - be depreciated to $0 over 5 years using straight-line

- TWs need painting: Use 40% of the capacity of a painting machine
 - currently owned and used by XYZ at 30% capacity
 - with maintenance costs of $100,000 (regardless of capacity used)

- Annual
 - operating costs: $400,000
 - operating income generated: $42M
 - operating income of regular widgets would decrease by $2M

- Working capital (WC): $2M needed over the life of the project

- Corporate tax rate 36%
TW Example (cont.)

- Ignore the $100M after-tax profit and focus on incremental cash-flows
- R&D cost of $1M over the past three years: Sunk cost ==> Ignore it
- The plant’s $20M cost: It’s a CAPX ==> Count it
- Machine’s $100K maintenance cost: Not incremental ==> Ignore it
 - Incurred with or without TW production
 - True even if accounting charges TW production a fraction of these

- Op. income of regular widgets decrease by $2M due to cannibalization
 - Would not occur without TW production
 - It is an opportunity cost ==> Count it

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPX</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>RW Inc. decrease</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Use Incremental Cash Flows

- Compare firm value with and without the project
 \[V(\text{project}) = V(\text{firm w/ project}) - V(\text{firm w/o project}) \]

- Use only cash flows (in and out) attributable to the project
 - **Sunk costs should be ignored**
 - They are spent w/ or w/o the project (bygones are bygones).
 - **Opportunity costs should be accounted for**
 - A project might exclude good alternatives (e.g., use of land).
 - **Accounting illusions should be avoided**
 - e.g. the project might be “charged” for a fraction of expenses that would be incurred anyway.
Use After-tax Cash Flows

- These are what you have left after paying capital suppliers
- Make sure to count the benefits of expensing, depreciation, etc.
- CAPX and Depreciation:
 - CAPX are not directly subtracted from taxable income
 - Instead, a fraction of CAPX (depreciation) is subtracted over a number of years
TW Example (cont.)

- Depreciation:
 - Straight line depreciation: Flat annual depreciation
 - Accelerated depreciation: Decreasing

- $20M CAPX is depreciated linearly over 5 years, down to zero.
 \[D = \frac{(20 - 0)}{5} = $4M \]

- Salvage value $5M is fully taxable since book value is zero.

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPX</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Depreciation</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salvage Value</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Year</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>CAPX</td>
<td>20.0</td>
<td>-</td>
</tr>
<tr>
<td>Income</td>
<td>-</td>
<td>42.0</td>
</tr>
<tr>
<td>RW Inc. decr.</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>Incr. income</td>
<td>-</td>
<td>40.0</td>
</tr>
<tr>
<td>Incr. cost</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>Salvage value</td>
<td>-</td>
<td>5.0</td>
</tr>
<tr>
<td>Incr. profit</td>
<td>-</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>44.6</td>
</tr>
<tr>
<td>Depreciation</td>
<td>-</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EBIT</td>
<td>-</td>
<td>35.6</td>
<td>35.6</td>
<td>35.6</td>
<td>35.6</td>
<td>35.6</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>44.6</td>
</tr>
<tr>
<td>Incr. taxes (36%)</td>
<td>-</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
<td>16.1</td>
</tr>
<tr>
<td>Incremental CF</td>
<td>-20.0</td>
<td>26.8</td>
<td>26.8</td>
<td>26.8</td>
<td>26.8</td>
<td>26.8</td>
<td>25.3</td>
<td>25.3</td>
<td>25.3</td>
<td>25.3</td>
<td>28.5</td>
</tr>
</tbody>
</table>

Note: We do as if entire EBIT is taxable ==> We ignore (for now) the fact that interest payments are not taxable.
So far (but we’re not done yet):

\[CF = \text{Incr. Profit} - \text{Taxes} - \text{CAPX} \]

\[= \text{Incr. Profit} - t \times (\text{Incr. Profit} - \text{Depr.}) - \text{CAPX} \]

\[= (1 - t) \times \text{Incr. Profit} + t \times \text{Depr.} - \text{CAPX} \]

Example: We could have computed the CF in year 1 as

\[(1 - 36\%) \times 39.6 + 36\% \times 4 - 0 = $26.8M \]
Changes in (Net) Working Capital

Remark 1:
- Many projects need some capital to be tied up (working capital) which constitutes an opportunity cost.
- We need the Change in Working Capital implied by the project.

Remark 2:
- Accounting measure of earnings
 \[
 \text{Sales - Cost of Goods Sold}
 \]
- Income and expense are reported when a sale is declared.
 - COGS in 2000 includes the costs of items sold in 2000 even if the cost was incurred in 1999 or hasn’t been incurred yet.
 - Sales in 2000 include the income from items sold in 2000 even if the payment has not been received yet.

\[
\text{Working Capital} = \text{Inventory} + \text{A/R} - \text{A/P}
\]
<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPX</td>
<td>20.0</td>
<td>-</td>
</tr>
<tr>
<td>Incr. profit</td>
<td>-</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
<td>44.6</td>
</tr>
<tr>
<td>Incr. taxes (36%)</td>
<td>-</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
<td>16.1</td>
</tr>
<tr>
<td>NWC</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>Change in NWC</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-2.0</td>
</tr>
<tr>
<td>Total</td>
<td>-22.0</td>
<td>26.8</td>
<td>26.8</td>
<td>26.8</td>
<td>26.8</td>
<td>26.8</td>
<td>25.3</td>
<td>25.3</td>
<td>25.3</td>
<td>25.3</td>
<td>30.5</td>
</tr>
</tbody>
</table>
Putting It All Together

FCF = (1 – t) * Incr. Profit + t * Depr. – CAPX – ΔNWC

This can also be rewritten as

FCF = (1 – t) * EBIT + Depr. – CAPX – ΔNWC
Finding the Value of the Cash Flows

- **Decision Rule**
 - Accept any project with positive NPV. The NPV tells you how much value the project creates.

\[
\text{NPV} = CF_0 + \frac{E[CF_1]}{(1+r)} + \frac{E[CF_2]}{(1+r)^2} + \frac{E[CF_3]}{(1+r)^3} + \frac{E[CF_4]}{(1+r)^4} + \ldots
\]

- We know how to find the expected *free cash flows*

- We need to find the appropriate *discount rate* for a project

- We need to account for the tax benefits of interest payments
 - Ignore this for now, and assume that the project is 100% equity financed
What is the appropriate discount rate for a project?

- The discount rate is the *opportunity cost of capital for the project*.

- It answers the question: What rate can investors earn on an investments with *comparable risk*?

- What does comparable risk mean?
Using the CAPM

- What does ‘comparable risk’ mean?
 - CAPM: risk = β

- How does risk translate into a discount rate?
 - CAPM: $E[r_E] = r_f + \beta E[R_M - r_f]$

- Practical issues
 - Estimating betas
 - Estimating the market risk premium
 - Leverage
Beta = regression slope
Leverage, returns, and risk

Firm is a portfolio of debt and equity

Therefore ...

\[r_A = \frac{D}{A} r_D + \frac{E}{A} r_E \]

and

\[\beta_A = \frac{D}{A} \beta_D + \frac{E}{A} \beta_E \]
Estimating Betas

- **Equity Beta**
 - Simply regress past stock returns on the market return

- **Asset Beta**
 - For an all-equity firm, equity beta = asset beta
 - How about levered firms?
 - Hint:
 - You can view the firm as a portfolio of debt and equity
 - Recall: portfolio beta = weighted average of individual asset betas
 - Question: What are the appropriate weights?
 - You can assume that debt is risk-free or that debt beta is between 0.1 and 0.3 (based on empirical studies)