What is computer security?

• Securing communications
 – Three steps:
 » Secrecy = prevent understanding of intercepted communication
 » Authentication = establish identity of sender
 » Integrity = establish that communication has not been tampered with

• Securing access to resources
 – Two steps:
 » Authenticate = establish identity of the requestor
 » Authorize = grant or deny access
Topic 1: Securing communications

• What can go wrong?
A bird’s eye view of the Internet

Leased lines to Asia

US backbone

Leased transatlantic line

European backbone

Regional network

IP token bus LAN

A

Amazon.com

IP token ring LAN

C

SNA network

Tunnel

D

IP Router

IP Ethernet LAN

B

Host

Bob
Communication security issues

- **Encryption** - How do I ensure the secrecy of my transactions?
- **Authentication** - How do I verify the true identity of my counterparts?
- **Integrity** - How can I be sure the message hasn’t been altered?

![Diagram showing the relationship between Consumer, Merchant, Impostor, Bob, Alice, and Darth.](image)
Traditional cryptography

Figure by MIT OCW.
Ceasar’s Cipher: Encryption by Substitution

• Substitute for each letter (block of bits)

 IBM
 Encrypt: each letter goes to previous letter in the alphabet
 HAL

• How can you crack a substitution cipher?
 – I.e., how can you guess the key?
Public-key cryptography

Figure by MIT OCW.
Public key cryptography

- **Secret key cryptography: Based on a secret key**
 - Same secret key used for encryption and decryption
 - Problem: How to transmit key securely on the Internet???

- **Public key cryptography: Two keys used**
 - Public key known to everybody. Used for encryption.
 - Private key known only to owner. Used for decryption.
Public key cryptography works if…

- **Private key remains secret**
 - Never leaves the owner’s computer
 - Typically encrypted and password-protected

- **Difficult to guess private key from knowledge of public key**
 - Boils down to trying all different key combinations
 - Difficulty of “breaking” the code rises exponentially with the bit length of the key
 - 1024-bit keys require more time than the life of the universe in order to be “broken”

- **Reliable public key distributed**
 - This is the most difficult problem!
Encryption is not enough: Spoofs

• Pretending to be someone else

• Hard to login without someone’s password

• But can send out communications with someone else’s name on it
 – email
 » 1993: Dartmouth sent a message saying midterm exam was cancelled
 » Message appeared to come from the Professor!
Needed: Message Authentication

- Make sure Bob gets the message unaltered
- Don’t let Alice deny sending the message
- Don't care about eavesdropper Darth, unless Darth changes the message
- How can cryptography help?
Digital Signatures

• Key property: Public and private keys can be applied in either order

• Alice has message M
 – She applies her private key to it
 – She sends encrypted message to Bob

• Bob decrypts it with Alice’s public key
 – gets back original message
 – infers that Alice is indeed the sender (since only Alice has the private key that corresponds to her public key)

• In that way, encrypting a message with one’s private key acts as a digital signature!
Public Key Management

• Public key cryptography works as long as
 ✓ Private key is really kept secret
 ✓ Hard to compute private key from public key
 – Get the correct public key from some trusted source

• Bob can send public key over insecure communication channel

• But how do you know Darth didn't send you his key instead?
A central key distributor

• Alice asks the distributor for Bob's public key

• The distributor sends it to Alice and "digitally signs" it

• Alice knows the key came from the distributor
 – Now just have to be sure that the distributor is honest and got Bob's key from Bob, not Darth

• Requires one secure communication per user
 – Bob sends public key to distributor when he joins the system

• Secret keys require secure communication between every pair of users
Public Key Infrastructure (PKI)

- Certificate Authorities are Trusted Third Parties charged with the responsibility to generate trusted certificates for requesting individuals or organizations.
 - Certificates contain the requestor's public key and are digitally signed by the CA.
 - Before a certificate is issued, CA must verify the identity of the requestor.

- These certificates can then facilitate automatic authentication of two parties without the need for out-of-band communication.
Certificates

- Used to certify a user’s identity to another user
 - The certificate issuer's name
 - Who the certificate is being issued for (a.k.a the subject)
 - The public key of the subject
 - Some time stamps

- Digitally signed by issuer

- Issuer must be a trusted entity

- All users must have a reliable public key of the issuer
 - in order to verify signed certificate
Web browsers come with a number of certificates already installed.
PKI Industry

• Main players: trusted third party CAs
 – Verisign
 – Entrust
 – Cybertrust
 – RSA

• Revenue from
 – products (PKI servers for intranets and extranets)
 – services (certificate services for individuals and organizations)
Applications: eCommerce Security

• **Needed to transmit sensitive information through the Web**
 – credit card numbers
 – merchandise orders

• **Requirements**
 – sender and receiver must authenticate each other before sending any “real” data
 – all “real” data must flow encrypted through the network
 – no intercepted communication can be used to an intruder’s advantage
SSL / TLS

• Secure Sockets Layer / Transport Layer Security

• Provides reasonable level of security

• Often used for transactions between consumers and merchants
SSL / TLS

Negotiate Security Options

Merchant’s digital certificate

Customer

Random session key generated by customer and encrypted with merchant’s public key

Merchant

Ongoing communication with both parties using session key
Applications: Virtual Private Networks (VPNs)

- Secure, private networks that operate over a public network (like the Internet).
 - Messages are confidential
 - Only authorized users can access network

- “Tunneling” -- encrypted messages from one protocol are packaged inside another protocol.
Topic 2: Access Control

- Something you have
- Something you know
- Something you are
Smart Cards
“Something you have”

• Several subcategories

• One of interest here is cryptographic smart cards:
 – Store user’s digital certificate and/or private key
 – Used to prevent private keys from being “hacked” from user’s computer
 – What happens if a smart card is stolen?
System Access Controls
“Something you know…”

• **Login procedures**
 – Usually something you know

• **Password leaks**
 – Commonly used password
 – Explicitly told
 » Voluntarily
 » Trojan horse
 – Trial and error
 – Intercepted communication
 » paper, camera, wiretap, file on disk, emanations, password sniffing on networks

• **Passwords are inconvenient**
 – In client/server environment, user doesn’t want to enter password for every service she connects to
Enter Biometrics…
“Something you are…”

Fingerprint Reader → Fingerprint Template → Match → Template Database

Face Pattern → Face Pattern Database → Match → Voiceprint Database

Camera → "Liveness" test

Microphone → Voiceprint

Figure by MIT OCW.
Sneaking through the backdoor...

- Strategies whose goal is to gain control by bypassing access control defenses

- Exploit “holes” in applications that connect our machine to the network
 - Viruses
 - Buffer overflow attacks
Viruses and Worms

- Programs that run on machines where they’re not wanted
- Transmitted through I/O channels
- Disguise themselves
 - How?
- Often don’t act right away
 - Why not?
- Why hasn’t anyone written a definitive virus eliminator?
Spyware, Adware, Malware

- Programs that are (usually) added to your computer without your knowledge and that do things you don’t want, such as:
 - Display unwanted ads in pop-up windows
 - Surreptitiously send information about your computer and your actions to someone else
 - Change toolbars, homepages, etc.

- Common sources:
 - “Free” software you download and install
 - Some web pages
Denial of service attacks

- Flood a server with fake messages (with “spoofed” IP addresses) so that no legitimate messages can get through
 - Flood someone’s mailbox
 - Recent attacks on eBay, Yahoo, etc.

- Difficult to trace since fake messages are sent from a variety of “hijacked” machines
Defensive Measures

- Virus scanners and removers
- Malware scanners and removers
- Firewalls
- Intrusion Detection Systems
Firewalls
What a firewall does

- Hides the structure of the network by making it appear that all transmissions originate from the firewall.

- Blocks all data not specifically requested by a legitimate user of the network.

- Screens data for source and destination address so you receive data from only trusted locations like people on your approved guest list.

- Screens the contents of data packets for known hacker attacks
Types of firewalls

- Packet filter: Looks at each packet entering or leaving the network and accepts or rejects it based on user-defined rules.
 - Stateless
 - Stateful

- Proxy server: Intercepts all messages entering and leaving the network. The proxy server effectively hides the true network addresses
Packet-level firewalls

Figure by MIT OCW.
Application-level gateways

Figure by MIT OCW.
Firewall performance/security tradeoffs

Figure by MIT OCW.
How do Intrusion Detection Systems work?

- **IDS** uses data mining techniques to uncover and report suspicious activities.

- **Two main strategies:**
 - Pattern recognition
 - Anomaly detection
Other prevention measures

- Stay current on patch levels for Microsoft's OS and web server.
Despite all that... security breaches are on the rise

Figure by MIT OCW.
.. and require far less technical expertise
Security Resources

• www.microsoft.com/security
 – Advisories
 – Patches
 – IIS Security Checklist

• www.securityfocus.com
 – Bugtraq Mailing List
 – Tools, Books, Links
 – Vulnerabilities and Fixes