Overview

- Securing communications
- Securing access
- Hacker attacks
What is computer security?

• Securing access to resources
 - Two steps:
 • Authenticate = establish identity of the requestor
 • Authorize = grant or deny access

Topic 1: Securing communications

• What can go wrong?
Communication security issues

- Encryption
 - how do I ensure the secrecy of my transactions?
- Authentication
 - how do I verify the true identity of my counterparts?

Private and public key cryptography

- Secret key cryptography: Based on a secret key
 - Same secret key used for encryption and decryption
 - Problem: How to transmit key securely on the Internet???
- Public key cryptography: Two keys used
 - Public key known to everybody. Used for encryption.
 - Private key known only to owner. Used for decryption.

{Message}
encrypted using Bob’s public key

Alice ------------------------ Bob

Only Bob who knows the corresponding private key can decrypt
Examples of private key cryptography: Transposition Ciphers

- Don't change any of the bits, just rearrange them

FOURSCORE AND SEVEN YEARS AGO

Get rid of spaces and arrange in three columns

FOU
RSC
ORE
AND
SEV
ENY
EAR
SAG
O

Read down the columns instead of across

FROASEE0OSRNENAAUCEDVYRG

Examples of private key cryptography: Substitution Ciphers

- Substitute for each letter (block of bits)

IBM

Encrypt: each letter goes to previous letter in the alphabet

HAL

- How can you crack a substitution cipher?
 - I.e., how can you guess the key?
 - ABCD EFBDH IJK EHNHJ LHIDE IMB
Examples of private key cryptography: One Time Pads

- A substitution cipher, but the substitution method changes for each letter (block)
- Sender and receiver each get identical copies of a set of random numbers
 - Interpret number n as "substitute letter n later in alphabet"
- Provably unbreakable
- Problem is creating and distributing truly random one-time pads

Examples of private key cryptography: The DES algorithm

- DES = Data Encryption Standard
- Private key system
 - Same key used for encryption and decryption
 - Key determines a sequence of permutations and substitutions
 - Process implemented in hardware; only keys are variables
- Developed by IBM in 1970s, with input from NSA
- Official standard for non-classified government comm.
- De facto standard for financial transactions
- Some argue that NSA deliberately made DES weak
 - Keys are 56-bits long
 - IBM had another algorithm available that used 128-bit keys
 - But no one has publicly proven it's breakable
Public Keys

- Each person has a pair of keys e for encryption and d for decryption
- Make e publicly available
- Alice uses Bob's e_B to send him a private message M^{e_B}
- Bob decrypts with d_B
 \[
 (M^{e_B})^{d_B} = M
 \]
- No one else knows d_B
- Works as long as
 - d is really kept secret
 - Hard to compute d from e
 - Get the correct e from some trusted source

Mathematical basis of PKC: RSA Public Keys

- Start with two large (e.g. 1024-bit) primes p,q
- n mod m denotes the remainder of division n/m
- Choose numbers e, d such that
 - (e*d) mod (p-1)(q-1) = 1
 - In other words: e*d = 1 + k(p-1)(q-1)
 - PUBLIC encryption key: (e, pq)
 - SECRET decryption key: (d, pq)
- Encryption
 - break messages into pieces M such that M<pq
 - transform each piece M into M^e modpq
Deciphering in RSA
(for aficionados only)

- Useful arithmetic equalities
 \[(M^e)^d = M^{ed} = (M^d)^e\] (1) easy
 \[M^e M^d = M^{ed} = M^{d+e}\] (2) easy
 \[M^{(p-1)(q-1)} \mod pq = 1\] (3) hard

- Decryption: raise message to power \(d\), mod \(pq\)
 \[\left(M^{(p-1)(q-1)} \mod pq \right)^d \mod pq = M^{ed} \mod pq = M^{1+k(p-1)(q-1)} \mod pq\]
 because \(ed = 1+k(p-1)(q-1)\)
 \[M^{1+k(p-1)(q-1)} \mod pq = (M \mod pq) \ast (M^{k(p-1)(q-1)} \mod pq) =\]
 \[(M \mod pq)^k \ast (1)^k = M \mod pq = M\] (because \(M < pq\))
 \[\ast \text{because of formula (3)}\]

Why public cryptography works?

- Encryption \(M' = (M)^e\) Decryption \(M = (M')^d\)
 - Public: \(e,p\ast q\)
 - Secret: \(d,p,q\)
- \(d\) too large for trial and error
- Just given \(p\ast q\) and \(e\), unknown how to compute \(d\) without knowing \(p,q\)
 - \((e\ast d) \mod (p-1)(q-1) = 1\)
- To compute \(p,q\) from \(p\ast q\), all different combinations of prime factors must be tried
- \(p\ast q\) can't be factored in reasonable time
 - 664bit -> 200 decimal digits -> 3700 years
 - 1024bit -> 308 decimal digits -> 10^{10} years!!!
Public key cryptography works if...

- Private key remains secret
 - Never leaves the owner's computer
 - Typically encrypted and password-protected
- Difficult to guess private key from knowledge of public key
 - Boils down to trying all different key combinations
 - Difficulty of “breaking” the code rises exponentially with the bit length of the key
 - 1024-bit keys require more time than the life of the universe in order to be “broken”
- Reliable public key distributed
 - This is the most difficult problem!

Encryption is not enough: Spoofs

- Pretending to be someone else
- Hard to login without someone’s password
- But can send out communications with someone else’s name on it
 - email
 - 1993: Dartmouth sent a message saying midterm exam was cancelled
 - Message appeared to come from the Professor!
 - netnews
 - world wide web
Needed: Message Authentication

- Make sure Bob gets the message unaltered
- Don’t let Alice deny sending the message
- Plausible Deniability
- Don’t care about eavesdropper Darth, unless Darth changes the message
- How can cryptography help?

Digital Signatures

- Key property: Public and private keys can be applied in either order
- Alice has message M
 - She applies her private key to it
 - She sends encrypted message to Bob
- Bob decrypts it with Alice’s public key
 - gets back original message
 - infers that Alice is indeed the sender (since only Alice has the private key that corresponds to her public key)
- In that way, encrypting a message with one’s private key acts as a digital signature!
Public Key Management

- Public key cryptography works as long as
 - d is really kept secret
 - Hard to compute d from e
 - Get the correct e from some trusted source
- Bob can send public key over insecure communication channel
- But how do you know Darth didn't send you his key instead?

A central key distributor

- Alice asks the distributor for Bob's public key
- The distributor sends it to Alice and "digitally signs" it
- Alice knows the key came from the distributor
 - Now just have to be sure that the distributor is honest and got Bob's key from Bob, not Darth
- Requires one secure communication per user
 - Bob sends public key to distributor when he joins the system
- Secret keys require secure communication between every pair of users
Public Key Infrastructure (PKI)

• Certificate Authorities are Trusted Third Parties charged with the responsibility to generate trusted certificates for requesting individuals organizations
 – Certificates contain the requestors public key and are digitally signed by the CA
 – Before a certificate is issued, CA must verify the identity of the requestor
• These certificates can then facilitate automatic authentication of two parties without the need for out-of-band communication

Overview of PKI

Example: X.509 certificates

PKI Industry

- Main players: trusted third party CAs
 - Verisign
 - Entrust
 - Cybertrust
 - RSA
- Revenue from
 - products (PKI servers for intranets and extranets)
 - services (certificate services for individuals and organizations)
- Revenue predictions (Datamonitor)
 - $330 million for products $347 million for services
 - Figures will grow to $1.2b and $1.4b resp. in 2006
- Mobile devices a big boost
Applications: eCommerce Security

• Needed to transmit sensitive information through the Web
 - credit card numbers
 - merchandise orders
• Requirements
 - sender and receiver must authenticate each other before sending any “real” data
 - all “real” data must flow encrypted through the network
 - no intercepted communication can be used to an intruder's advantage

SSL Certificates

• Used to certify a user's identity to another user
 - The certificate issuer's name
 - Who the certificate is being issued for (a.k.a the subject)
 - The public key of the subject
 - Some time stamps
• Digitally signed by issuer
• Issuer must be a trusted entity
• All users must have a reliable public key of the issuer
 - in order to verify signed certificate
Netscape Secure Sockets Layer (SSL)

- A->B hello
- B->A Hi, I'm Bob, bob’s-certificate
- A->B prove it, challenge msg
- B->A {challenge msg} bob’s-private-key
- A->B {secret key} bob’s-public-key
- B->A {some message} secret-key

Chrysanthos Dellarocas.
SSL Checks

- How can we extend the protocol for 2-way authentication?
 - so that, e.g. a client cannot deny placing an order
- What happens if somebody sniffs and reuses bob's certificate?
- What happens if somebody intercepts and garbles/replays part of the “real data” communication?

Topic 2: Access Control

General Access Control Techniques

- Something you have
- Something you know
- Something you are

System Access Controls
“Something you know…”

- Login procedures
 - Usually something you know
- Password leaks
 - Commonly used password
 - Explicitly told
 - Voluntarily
 - Trojan horse
 - Trial and error
 - Intercepted communication
 - paper, camera, wiretap, file on disk, emanations
 - password sniffing on networks
- Passwords are inconvenient
 - In client/server environment, user doesn’t want to enter password for every service she connects to
Enter Biometrics...
“Something you are...”

- Fingerprint recognition
- Face recognition
- Voice Authentication

Smart Cards
“Something you have”

- Several subcategories
- One of interest here are cryptographic smart cards:
 - Store user’s digital certificate and/or private key
 - Used to prevent private keys from being “hacked” from user’s computer
 - What happens if a smart card is stolen?
Overview of access control methods

If only life was so simple...
Sneaking through the backdoor...

- Strategies whose goal is to gain control by bypassing access control defenses
- Exploit “holes” in applications that connect our machine to the network
 - Viruses
 - Buffer overrun attacks
Viruses and other Critters

- Programs that run on machines where they're not wanted
- Transmitted through I/O channels
- Disguise themselves
 - How?
- Often don't act right away
 - Why not?
- Why hasn't anyone written a definitive virus eliminator?

Denial of service attacks

- Flood a server with fake messages (with “spoofed” IP addresses) so that no legitimate messages can get through
 - Flood someone’s mailbox
 - Recent attacks on eBay, Yahoo, etc.
- Difficult to trace since fake messages are sent from a variety of “hijacked” machines
Denial of service explained

Defensive Measures

- Firewalls
- Intrusion Detection Systems
Firewalls

What a firewall does

- Hides the structure of the network by making it appear that all transmissions originate from the firewall.
- Blocks all data not specifically requested by a legitimate user of the network.
- Screens data for source and destination address so you receive data from only trusted locations like people on your approved guest list.
- Screens the contents of data packets for known hacker attacks
Types of firewalls

- Packet filter: Looks at each packet entering or leaving the network and accepts or rejects it based on user-defined rules.
- Application gateway: Applies security mechanisms to specific applications, such as FTP and Telnet servers.
- Proxy server: Intercepts all messages entering and leaving the network. The proxy server effectively hides the true network addresses.

Packet-level firewalls

Application-level firewalls

For this diagram, see Figure 64, "Application-level Gateway," "Risk Management Forecast: 2001." PricewaterhouseCoopers LLP, 2001, pp. 269.

Firewall performance/security tradeoffs

Intrusion Detection Systems

How does IDS work?

• IDS uses data mining techniques to uncover and report suspicious activities
• Two main strategies:
 - Pattern recognition
 - Anomaly detection
Pattern Recognition

- Developers collect data on all known hacker attacks:
 - Vulnerabilities in OS and applications
 - Know hacker techniques
 - Latest discussions on hacker newsgroups and Bugtraq
- Mine the data for signatures of hacker activity
- Monitor all activity on the host/network for the signatures
- Benefits: Gives a clear understanding of what is happening and how to fix the problem
- But: can't detect newly developed attacks or modifications to older attacks. Likely to report the least serious attacks and miss the most dangerous

Anomaly Detection

- Monitors the hosts/network for a few days
- Collects data on normal types of traffic
- Mines the data to produce signatures of normal traffic
- Monitors all activity again and reports unexpected events
- Benefits: Allows for early notification of new and sophisticated attacks
- But:
 - Gives less understanding of the type of attack and how to recover
 - If you are already being attacked, this is the normal pattern

Chrysanthos Dellarocas.
Pattern Recognition-Practical

- Based on knowing what is the pattern of attack
- Focus on what constitutes an attack
- DM Technique: Neural Net (credit card industry), Genetic Algorithm, rule base decision (cumbersome)

Sample Pattern

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of failed logins</td>
<td>greater than 5, then this connection is "guess", a guessing password attack.</td>
</tr>
<tr>
<td>Hot (count of access to system directories, creation and execution of program) indicators</td>
<td>3, the number of compromised (count of file/path "not found" errors and "jump to" instructions, etc.) conditions</td>
</tr>
</tbody>
</table>

If none of the above, then this connection is "normal".

Anomaly Detection-Practical

- Focus primarily on normalcy and alert on anomaly
- Usual levels of traffic
- Time-based: Logon during hours of operation
- Connection-based: TCP connections time duration
- DM Technique: Neural Net (credit card industry), rule base decision (depends on scope size)

<table>
<thead>
<tr>
<th>User</th>
<th>Anomaly Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmer2</td>
<td>logs in from beta</td>
</tr>
<tr>
<td>Secretary</td>
<td>logs in at night</td>
</tr>
<tr>
<td>System Admin.</td>
<td>logs in from jupiter</td>
</tr>
<tr>
<td>Secretary</td>
<td>"becomes a manager"</td>
</tr>
<tr>
<td>Programmer1</td>
<td>logs in at night</td>
</tr>
<tr>
<td>System Admin.</td>
<td>"becomes a programmer"</td>
</tr>
<tr>
<td>Manager1</td>
<td>"becomes a system admin."</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User</th>
<th>Normal Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>System administrator</td>
<td>logs in as root, cats the pass-word file, and runs commands such as tra</td>
</tr>
<tr>
<td>Programmer1</td>
<td>writes public domain C code, use a vi editor, compiles the C code, reads and sends mail, and executes unix commands.</td>
</tr>
<tr>
<td>Programmer2</td>
<td>a similar user profile as in programmer 1, but works in afternoons and evenings.</td>
</tr>
<tr>
<td>Secretary</td>
<td>edits latex files, runs latex, reads mail, and sends mail.</td>
</tr>
<tr>
<td>Manager1</td>
<td>reads and sends mail</td>
</tr>
<tr>
<td>Manager2</td>
<td>reads mail.</td>
</tr>
</tbody>
</table>

Chrysanthos Dellarocas.
Despite all that...
security breaches are on the rise

1995: approximately 2,500 incidents
1996: approximately 2,600 incidents
1997: approximately 2,100 incidents
1998: over 3,500 incidents
1999: over 8,000 incidents

Source: Carnegie Mellon University, 2000

.. and require far less technical expertise

Hacker Attacks
A common methodology is the following:

- 1. Gather target information.
- 2. Identify services offered by target to the public (whether intentional or not).
- 3. Research the discovered services for known vulnerabilities.
- 4. Attempt to exploit the services.
- 5. Utilize exploited services to gain additional privileges from the target.

Reiterate steps 1-5 until goals are achieved.

Step 1: Gather target information.

- Domain names, IP address ranges.
- InterNIC contact information.
- Physical addresses.
- Organizational structures.
- Alliances and financial information.
- Names of officers, managers, technical staff.
- Newsgroup posts.
Step 2: Identify services.

- Web servers.
- FTP servers.
- DNS servers.
- e-mail gateways.
- Help desks/phone support.
- Other (gopher, LDAP, irc, etc.)

Port Scanning

Port scanning is used to identify which ports are open and what services are running on those specific ports. Examples of services are:

- ftp (port 21)
- telnet (port 23)
- http (port 80)
Security Scanners

What is a security scanner?
A security scanner is software that will remotely audit a given network and determine whether hackers may break into it or misuse it in some way.

Examples include:
- NMAP
- SAINT™
- Nessus

Step 3: Research vulnerabilities.
- Vendor announcements.
- Default configurations.
- Poor configurations. (i.e. passwords, cleartext protocols)
- Gather available exploits or develop new exploit.
- Derived exploits.
- Some original work.
Step 4: Exploit vulnerabilities.

- Attempt to exploit vulnerabilities to gain access to the target.
- Continue until successful.

Step 5: Utilize increased access.

- Exploit additional vulnerabilities to gain additional access and information to use in penetrating further into an organization.
- The hacker "becomes" a legitimate user (even an administrator).
Sniffing tools

- Monitor all traffic on a LAN
- Can be used to capture usernames, passwords etc.
Example: IIS web exploit.

- Due to a bug, IIS/PWS allows arbitrary commands to be executed by the web server by properly “encoding” them inside a URL request.
- Hackers can use this vulnerability in order to
 - Read any file on the machine
 - Execute any application on the machine
 - Download code that will enable them to gain access to the machine
 - ...
Security Resources

- www.microsoft.com/security
 - Advisories
 - Patches
 - IIS Security Checklist
- www.securityfocus.com
 - Bugtraq Mailing List
 - Tools, Books, Links
 - Vulnerabilities and Fixes

Recommended Book

Hacking Exposed: Network Security
Secrets and Solutions

George Kurtz
Stuart McClure
Joel Scambray