Under the hood of a commercial Web Site

- Issues
- Typical Site Architecture
- Case Study: Travelocity

The story so far...

Web browser → Internet → Web Server → CGI/ASP script → Database → Static content → Web Site
Issues for building mission-critical eCommerce sites

- **Content management**
 - Ensure that content development is done in a streamlined and orderly fashion

- **Security**
 - Physical security
 - Access control

- **Availability/Fault Tolerance**
 - Ensure the computer services remain available to users in the face of partial failures

- **Accuracy**
 - Ensure that multi-user access and system crashes leave data in an accurate state

- **Scalability**
 - Ensure that response time remains acceptable as site traffic grows
Building mission-critical eCommerce sites: Summary of Technologies

- Content management
 - Content Management Software
- Security
 - Physical security: Hosting
 - Access control: Firewalls
- Availability/Fault Tolerance
 - Replication
- Accuracy
 - Transaction Processing
- Scalability
 - Replication
 - Load Balancing
 - Web Caching

Issue #1: Large-scale content development

- Large number of authors contributing site content
- Diverse types of content (e.g., image, video, and other media files)
- Need for regular content posting and replacement (i.e., weekly sales promotions)
- Often one or more approvals are required before content is posted
- Some content needs to be personalized or tailored to match the needs and interests of a site visitor
Additional issues

- Often support for multiple languages and time zones is required
- Content presentation must consistently conform to branding and appearance standards
- Version archiving and an audit trail
- Content must be viewable across a variety of browsing devices, not just PCs

Example: Content update workflow

- Automatic support for content management workflows
Solution: Content management systems

- Still a fledgling application category
 - Lots of Web authoring tools claim to be but aren’t!
- Relatively small adoption from site developers
 - More than 50% of sites use manual methods
 - Market leader (Vignette) only has 8% of market!!!
- Hefty price tag
 - Vignette comes to more than $0.5M
- Lots of growth potential, but also room for better products

Representative Vendors

- CardoNet
- Interwoven
- OnDisplay
- Poet
- Versifi
- Vignette
What a firewall does

- Hides the address of the network by making it appear that all transmissions originate from the firewall.
- Passes outgoing traffic without screening, while hiding the network address.
- Blocks all data not specifically requested by a legitimate user of the network.
- Screens data for source and destination address so you receive data from only trusted locations like people on your approved guest list.
- Screens the contents of data packets for known hacker attacks
Types of firewalls

- **Packet filter**: Looks at each packet entering or leaving the network and accepts or rejects it based on user-defined rules.
- **Application gateway**: Applies security mechanisms to specific applications, such as FTP and Telnet servers.
- **Proxy server**: Intercepts all messages entering and leaving the network. The proxy server effectively hides the true network addresses.

Web Hosting

- Ensure 24x7 site operation
- Provide access to network bandwidth
- Provide physical site security
Self-manage or Host?

- Hosting services are on the rise
 - Concentrated technology expertise
 - Scalability and performance issues
 - Security issues
- Hosters are an uneven lot
- Hosting is not a commodity

The various flavors of hosting

- Simple hosting
 - Examples: Sprint, UUNET
- Collocation hosting
 - Examples: Frontier GlobalCenter, Sprint, UUNET
- Managed hosting
 - Examples: GTE, UUNET, IBM, Qwest
- Full-service hosting
 - Examples: IBM, Qwest
Select level of hosting based on what kind of company you are
- eCommerce pioneer → collocation hosting
 - Yahoo, Amazon
- basic eCommerce presence → simple hosting
 - Century 21
- some in-house expertise → managed hosting
 - Land’sEnd, Vanguard
- little in-house expertise → full-service hosting
 - Amtrak, General Motors

Why do computers crash?
- Hardware errors
- Operating system errors
- Application errors
- Human errors

Use redundancy to restore normal operation after crashes
- Data redundancy
- Active Replication
Data Replication

- Keep several copies of same data (replicas)
- If one server is down, query next server
- Can improve response when load is heavy
- Problem: How to synchronize replicas?

Active Replication

- Establish redundant copies of vital programs and servers
 - process groups
 - every group member operates on its own replica
- Every message is processed by all group members
 - members remain in mutually consistent states
- If one member fails, other members can still respond
How can we do even better?

Issue #4: System Crashes might corrupt data

- Transfer money from savings to checking
 - x=sav; sav = x+1
 - w=chk; chk = w -1

- What happens if system crashes in the middle
 - x=sav; sav = x+1
 - SYSTEM CRASH

- Need to have a way to undo the effects of partially completed logical operations
Solution: Transaction Model

- Transaction: a process that possibly changes the database state
 - Self-contained, indivisible set of accesses to the database
 - May involve several reads and writes
 - All-or-nothing execution
 - Example: Transfer money is a single transaction
 - \(x = \text{sav}; \ \text{sav} = x + 1; \ w = \text{chk}; \ \text{chk} = w - 1 \)

Using Transactions for Crash Recovery

- Transactions are atomic (indivisible)
 - Either executes completely or not at all
 - Any transaction that has not yet issued any writes may restart without causing any damage.
 - Once a transaction starts writing, it should do all of its writes
 - Even if it crashes in the middle

- Transactions are durable
 - If the transaction is “committed” (starts writing)
 - It should finish, even if machine crashes partway through
Implementation: DO-UNDO-REDO Log

- Keep a log of all database writes ON DISK
 - transaction id; data item; new value
 - (Tj; x=25) (Ti; y=56)
 - But don’t write to the database yet
- At the end of transaction execution
 - Add "commit <transaction id>" to the log
 - Do all the writes to the database
 - Add "complete <transaction id>" to the log
 - Now it’s OK to release the locks
- Restart after a crash by redoing the log
 - Any write for a committed but uncompleted transaction gets written again
 - What if the value was already written?
 - Any write for a non-committed or completed transaction is ignored

Distributed Transactions

- Distributed transaction may write data to several sites
 - Transfer money between accounts on separate computers
 - Update several copies of a database
- Want to write all data or cancel the transaction
 - Transaction Manager program may crash
 - Data sites may crash
 - Network may temporarily stop sending messages
- Needs more complicated protocols
 - out of the scope of this class
Issue #5 Scalability: Why you should care

- "... the No.1 reason that customers got fed up and took their business elsewhere was technical problems, including unacceptably slow response times."
 - Fortune magazine, November 8, 2001

- "...28% of Netizens that encountered glitches, left the site never to return"
 - Business Week, November 1, 2001

Technological Alternatives

- Local load balancer
- Site mirroring
- Network caching
- Content routing
Load balancing solutions

Companes: Cisco, HydraWeb

Distributes client requests among replicated servers

Network caching solutions

Companies: Inktomi, CacheFlow

Routers store copies of most frequently accessed Web pages and can deliver them directly (instead of passing all requests on to the server)
Intelligent content routing

Companies: Akamai, Sandpiper
Akamai Current Network

Building mission-critical eCommerce sites: Summary of Technologies

- Content management
 - Content Management Software
- Security
 - Physical security: Hosting
 - Access control: Firewalls
- Availability
 - Server Replication
- Accuracy
 - Transaction Processing
- Scalability
 - Replication
 - Load Balancing
 - Web Caching
Lecture notes for 15.564: Information Technology I

A Three Layer Website Architecture

- **Front-end**
 - Web Server
 - Web Server
 - Load Balancer
 - Web interface/
 Manage page hits
- **Middleware**
 - Database Intelligence
 - Session management software
- **Back-end**
 - Inventory Database
 - Content Database
 - Profile Database
 - Read/
 Store data

Travelocity Architecture

- **Front-end**
 - Netscape
 - WEB SERVER
 - Hosted by: Sabre
- **Middleware**
 - Vignette
 - Story Server 4 CMS
 - TP
 - TCL
 - BUSINESS SERVICES
 - STB
- **Back-end**
 - Vignette
 - ORACLE
 - Hosted by: Sun
 - Oracle
 - Oracle
 - FTPE
 - SABRE

Chrysanthos Dellarocas.