Introduction to Operations Management
Introduction to Operations Management

1. Introductions
2. Housekeeping
 a. SloanSpace
 b. Course Introduction
 c. Professional Standards
3. Concepts & Nokia
4. Course Outline
5. Next Time
 a. Sega
 b. CPM
“Housekeeping” for Operations Management

1. Course Materials:
 Course packet

2. Grading
 Class participation: 30%
 First case write-up 20%
 Second case write-up 25%
 Third case write-up 25%

3. Professional Standards
 Academic Integrity--”Do your own work”
 Behavioral Integrity -- “Do unto others . . . “
Three Foundational Components of Operations Management

Product Development

Process Design & Management

Supply Chain
Product Development

- **Product Design**
 - **Voice of the Customer**
 What is the role of product design in the demand and supply issues faced by Nokia and Ericsson?
 - **Product/System Architecture**
 Were problem chips integral or modular?

- **Product Development**
 - **Project management & Cost**
 - **Design for Manufacturing**
 How important was "Nokia quickly redesigned some of its chips so they could be produced elsewhere?"

- **Technology Strategy**
 Did product technology play a role in the differential performance of N & E?
Process Design & Management

• Process Design: Options & Assessment
 - Queueing Analysis
 - Capacity Analysis
 How did Nokia assess capacity in the crunch? How did they change capacity?
 - Uncertainty Analysis
 How did each company prepare for difficult-to-anticipate events?

• Inventory Systems
 • Did N&E operate Just-in-Time, or did they hold big stores of chips waiting just in case?

• Production Control
 Was Nokia’s software the principal instrument of control?
 How did they monitor the situation?

 ERP/Software/Internet
 • Was Nokia’s software the principal instrument of communication?

• Operations Excellence
 - Continuous Improvement
 - Just-in-Time
 - Quality Management (SPC, 6σ)
Supply Chain

- **Strategic Supply Chain Design**
 - Make Vs. Buy
 - Did sourcing strategy play a role in the differential performance of N & E?
 - Supplier Selection, Sourcing
 - Single vs. Dual sourcing

- **Supply Chain Management**
 - End-to-end coordination
 - Do we see here examples of integrated enterprise?
 - Supplier Relations
 - hard-nosed, polite, hostile, collaborative?

- **Delayed Differentiation**
Companies and Industries we will cover

<table>
<thead>
<tr>
<th>Product</th>
<th>Sega</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics & SW</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Toyota</td>
</tr>
<tr>
<td>Autos:</td>
<td>Dell, Cisco, Quanta</td>
</tr>
<tr>
<td>Electronics:</td>
<td>Bank of America</td>
</tr>
<tr>
<td>Financial</td>
<td></td>
</tr>
<tr>
<td>Food Retailing</td>
<td>Burger King</td>
</tr>
<tr>
<td>Food Processing</td>
<td>National Cranberry</td>
</tr>
<tr>
<td>Air Transport</td>
<td>Alaska Air</td>
</tr>
<tr>
<td>Health Care:</td>
<td>University Health</td>
</tr>
<tr>
<td>Software:</td>
<td>Sega, SAP (Vandelay), Oracle (Cisco)</td>
</tr>
<tr>
<td>Supply Chain</td>
<td></td>
</tr>
<tr>
<td>Electronics:</td>
<td>Nokia, HP</td>
</tr>
<tr>
<td>Fashion Apparel</td>
<td>Sport Obermeyer</td>
</tr>
<tr>
<td>Food Distribution</td>
<td>Barilla Pasta</td>
</tr>
<tr>
<td>eSupply</td>
<td>Webvan</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>2</td>
<td>Product Dev</td>
</tr>
<tr>
<td>3</td>
<td>Operations</td>
</tr>
<tr>
<td>4</td>
<td>Strategy</td>
</tr>
<tr>
<td>5</td>
<td>Process</td>
</tr>
<tr>
<td>6</td>
<td>Technology</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Process</td>
</tr>
<tr>
<td>9</td>
<td>Analysis</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Process</td>
</tr>
<tr>
<td>12</td>
<td>Quality</td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Supply</td>
</tr>
<tr>
<td>16</td>
<td>Chain</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Wrap-Up</td>
</tr>
</tbody>
</table>
Clockspeed:
The Dimension of Time on Operations Management
Study the Industry Fruitflies

Evolution in the natural world:

FRUITFLIES
evolve faster than

MAMMALS
evolve faster than

REPTILES

THE KEY TOOL:

Cross-SPECIES Benchmarking of Dynamic Forces

Evolution in the industrial world:

INFOTAINMENT is faster than

MICROCHIPS is faster than

AUTOS evolve faster than

AIRCRAFT evolve faster than

MINERAL EXTRACTION

THE KEY TOOL:

Cross-INDUSTRY Benchmarking of Dynamic Forces
INDUSTRY CLOCKSPEED IS A COMPOSITE: OF PRODUCT, PROCESS, AND ORGANIZATIONAL CLOCKSPEEDS

Mobile Phone INDUSTRY CLOCKSPEED

THE Mobile Phone product technology

THE Mobile Phone PRODUCTION PROCESS process technology

THE Mobile Phone MANUFACTURING COMPANY organization
Mobile Phone System CLOCKSPED is a mix of Transmission Standards, Software and Handsets

TRANSMISSION STANDARD
slow clockspeed

SOFTWARE APPLICATIONS
medium clockspeed

OPERATING SYSTEM
slow clockspeed

SERVICES
fast clockspeed

HAND SET
fast clockspeed

ISSUE: THE FIRMS THAT ARE FORCED TO RUN AT THE FASTEST CLOCKSPED ARE THE MOST LIKELY TO STAY AHEAD OF THE GAME.
Dynamics between New Projects and Core Capability Development: PROJECTS MUST MAKE MONEY AND BUILD CAPABILITIES

See Leonard-Barton, D. Wellsprings of Knowledge
ALL COMPETITIVE ADVANTAGE IS TEMPORARY

Autos:

Computing:

World Dominion:
Greece in 500 BC, *Rome* in 100AD, *G.B.* in 1800

Sports:
Bruins in 1971, *Celtics* in 1986, *Yankees* no end

The faster the clockspeed, the shorter the reign
ARCHITECTURES IN 3-D

INTEGRALITY VS. MODULARITY

Integral product architectures feature close coupling among the elements:
- Elements perform many functions
- Elements are in close spacial proximity
- Elements are tightly synchronized
- Ex: jet engine, airplane wing, microprocessor

Modular product architectures feature separation among the elements:
- Elements are interchangeable
- Elements are individually upgradeable
- Element interfaces are standardized
- System failures can be localized
- Ex: stereo system, desktop PC, bicycle
SUPPLY CHAIN ARCHITECTURE

Integral supply-chain architecture features close proximity among its elements
- Proximity metrics: Geographic, Organizational Cultural, Electronic
 - Example: Toyota city
 - Example: Ma Bell (AT&T in New Jersey)
 - Example: IBM mainframes & Hudson River Valley

Modular supply-chain architecture features multiple, interchangeable supplier and standard interfaces
- Example: Garment industry
- Example: PC industry
- Example: General Motors’ global sourcing
- Example: Telephones and telephone service
DESIGNING ARCHITECTURES FOR PRODUCTS & VALUE CHAINS: THE NEED FOR ALIGNMENT

Value Chain Architecture

(Geog., Organ., Cultural, Elec.)

<table>
<thead>
<tr>
<th>Integral</th>
<th>Modular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Architecture</td>
<td>Value Chain Architecture</td>
</tr>
<tr>
<td>Integral</td>
<td>Integral</td>
</tr>
<tr>
<td>Jet engines</td>
<td>Polaroid</td>
</tr>
<tr>
<td>Microprocessors</td>
<td>Nortel, Lucent</td>
</tr>
<tr>
<td>Mercedes vehicles</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive Supplier Parks</td>
</tr>
</tbody>
</table>
A 3-D CE decision model illustrating the imperative of concurrency.
DESIGNING ARCHITECTURES FOR PRODUCTS & VALUE CHAINS: MODULARITY VS. OPENNESS

ARCHITECTURAL STRUCTURE

<table>
<thead>
<tr>
<th>INTEGRAL</th>
<th>MODULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentium Chip Mercedez Vehicles SAP ERP</td>
<td>IBM Mainframes Microsoft Windows Chrysler Vehicles</td>
</tr>
</tbody>
</table>

ARCHITECTURAL PROPRIETARINESS

<table>
<thead>
<tr>
<th>CLOSED</th>
<th>OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td>Palm Pilot software & accessories Phones & service Web-based ERP</td>
</tr>
</tbody>
</table>

INFORMATION ARCHITECTURE MUST REFLECT BUSINESS MODEL
All Conclusions are *Temporary*

Clockspeeds are increasing almost everywhere

3-D Concurrent Engineering must anticipate Industry and Value Chain Dynamics

3-D Concurrent Engineering is a key organizational competency

Study of Fruit Flies can help with crafting strategy