Class 19: Course Wrap-up

1. Course Main Concepts and Simulation Debriefing

2. Sloan Evaluation Forms

3. Final Feedback Survey

after class

2002 - Jérémie Gallien
Intro to Ops At-a-Glance

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Date</th>
<th>Contents</th>
<th>Readings</th>
<th>Assignments</th>
<th>Sim</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mon</td>
<td>29-Mar</td>
<td>Course Introduction</td>
<td></td>
<td>Course Syllabus</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Wed</td>
<td>31-Mar</td>
<td>Case: Burger King + McDonald's</td>
<td></td>
<td>Types of processes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fri</td>
<td>2-Apr</td>
<td>Lecture: Capacity</td>
<td></td>
<td>Wait-in-line blues</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mon</td>
<td>5-Apr</td>
<td>Case: National Cranberry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Wed</td>
<td>7-Apr</td>
<td>Case: Webvan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Fri</td>
<td>9-Apr</td>
<td>Lecture: Inventory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Mon</td>
<td>12-Apr</td>
<td>Case: Barilla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Wed</td>
<td>14-Apr</td>
<td>Case: Sport Obermeyer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Fri</td>
<td>16-Apr</td>
<td>Lecture: Production Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Wed</td>
<td>21-Apr</td>
<td>Case: Hewlett-Packard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Fri</td>
<td>23-Apr</td>
<td>Book: The Goal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mon</td>
<td>26-Apr</td>
<td>Lecture: Quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Wed</td>
<td>28-Apr</td>
<td>Case: Toyota</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Fri</td>
<td>30-Apr</td>
<td>Lecture: Process Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Mon</td>
<td>3-May</td>
<td>Case: Global Financial Corporation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Wed</td>
<td>5-May</td>
<td>Lecture: Supply Chain Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Fri</td>
<td>7-May</td>
<td>Lecture: Product Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Mon</td>
<td>10-May</td>
<td>Case: Sega Dreamcast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Wed</td>
<td>12-May</td>
<td>Simulation & Course Wrap-up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Readings and Assignments are placeholders for actual course materials.

2002 - Jérémie Gallien
What is Operations Management?

OM = Strategy Execution!

TIME

QUALITY → FLEXIBILITY

COST

2002 - Jérémie Gallien
Benchmark Companies

<table>
<thead>
<tr>
<th>Company</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toyota</td>
<td>Lean Manufacturing</td>
</tr>
<tr>
<td>FedEx (Webvan)</td>
<td>Hub & Spoke</td>
</tr>
<tr>
<td>Dell</td>
<td>Direct-to-Consumer</td>
</tr>
<tr>
<td></td>
<td>ATO technology</td>
</tr>
<tr>
<td>Walmart (Barilla)</td>
<td>Vendor-Managed Inventory</td>
</tr>
<tr>
<td>Sport Obermeyer</td>
<td>Quick Response</td>
</tr>
<tr>
<td>Zara</td>
<td>Assortment Optimization</td>
</tr>
</tbody>
</table>

2002 - Jérémie Gallien
Operations Management History

- 1920’s: Ford & Taylor
 Moving Production line and standardized work
- 1930’s: Shewhart
 Statistical Control of Quality
- 1960’s: Ohno
 Lean Production System
- 1980’s: Goldratt
 Theory of Constraints
- 1990’s: Hammer
 Reengineering & Process Focus
- 2000’s: 15,760 Alumni
 Storytelling
A Translation Challenge

Corporate Structure

Top Management speaks the language of MONEY

Operations Management

Mid-Mgt., Associates, Workers speak the language of THINGS

OM merges physical and financial analyses, and requires great care to people issues!

2002 - Jérémie Gallien
Operations Management Architecture

Product

Integral Vs. Modular:
- Functions
- Interface
- Interchangeability

Supply-Chain

Integral Vs. Modular:
- Geography
- Organization
- Culture
- Communication

Process

Integral Vs. Modular:

HR

Functional Managers

General Manager

Project Managers
Operations Management Activities

Set of responsibilities:

1. **DESIGN**
 Product, Process, Supply-Chain, HR

2. **PLANNING**
 Demand (forecast), Supply (Capacity)

3. **CONTROL**
 Inventory, Production Control, Suppliers
 Pricing, LT Quote, Quality, HR

4. **IMPROVEMENT**
 Time, Cost, Flexibility, Quality
Operations Management Tools

<table>
<thead>
<tr>
<th></th>
<th>Product Design & Devlpt.</th>
<th>Process</th>
<th>Supply Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improvement</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Factory Simulation Skills

Product Design & Devlpt.

- **Process**
 - Process Architecture
 - Process Flow Diagram

- **Supply Chain**
 - Inventory Control
 - Team Organization
 - TOC (The Goal)
 - TPS

Design

- Planning
 - Forecasting
 - Capacity Analysis
 - Cycle Time Analysis

Control

- Improvement

2002 - Jérémie Gallien
Capacity Analysis

<table>
<thead>
<tr>
<th>Step</th>
<th>Station</th>
<th>Set-up time (per lot)</th>
<th>Operation time (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.062777</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1.5</td>
<td>0.001666</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0.021388</td>
</tr>
</tbody>
</table>

\[\rho = \frac{\lambda}{N \times \mu} \]

FORECAST

2002 - Jérémie Gallien
... and Queueing Theory

\[W = \frac{1}{\lambda} \rho \frac{\sqrt{2(S+1)}}{1 - \rho} \times \frac{C_A^2 + C_S^2}{2} \]

\[\rho = \frac{\lambda}{M \times \mu} \]
An Example for Insight

1 job arrives every minute on average

Queue initially empty

Server takes 45 sec. to process each job

λ = 1

μ = 1.33

Time (min)

Queue Length

2002 - Jérémie Gallien
Cycle Time Analysis

60 kits/lot

Station 1
Station 2
Station 3
Station 2

30 kits/lot

total cycle time

total cycle time

2002 - Jérémie Gallien
Customer and Process Timeline

Target customer delivery LT

PULL

PUSH
Delayed Differentiation

Delaying Differentiation

Upstream Steps

Customization Step

LT1

LT2

0

t

Target customer delivery LT

2002 - Jérémie Gallien
Delayed Differentiation

Upstream Steps

Customization Step

Target customer delivery LT

0

LT1

LT2

t

2002 - Jérémie Gallien
Inventory Theory...

Inventory

LT = Lead Time
EDDLT = Expected Demand During Lead Time

Order 1 placed
Order 1 received

2002 - Jérémie Gallien

Slide courtesy of Prof. Thomas Roemer, MIT.
... and Inventory Practice

- EOQ Model
- ROP/ROQ
- Newsboy Model
- Continuous Review/Periodic Review
Simulation Performance Drivers

• Proactive Vs. Reactive Strategy: this is what models allow!!!
• Extent of quantitative analysis does have an impact BUT describing qualitatively the correct trade-offs brings you a long way…
• Understanding financial impact of operational data (lead time, utilization, queues, etc…) had a huge impact!
Final Words

Do Keep in Touch and…
GOOD LUCK!!!