15.760 Introduction to Operations Management

Professor Jérémie Gallien
Operations Management Group,
MIT Sloan School of Management
Bio

– French, Eng.D in Production Systems from Ecole des Mines de Paris

– PhD (2000) in Operations Research from MIT

– Research: Online sales channels, dynamic pricing, e-procurement, manufacturing revenue management, order fulfillment, product introduction

– Experience in Electronics, Aeronautics, Transportation and Software
Class Outline

• Class Introduction: Concepts & Outline

• Organization
 – Material
 – Assignments/Grading
What is Operations Management?

OM = Strategy Execution!

TIME

QUALITY

COST

FLEXIBILITY
Why Study OM (1)?

Dell Vs. Compaq, HP

Toyota Vs. Ford, GM

Amazon Vs. Barnes & Noble

JetBlue, Southwest Vs. American Airlines
Top Management speaks the language of MONEY

Mid-Mgt., Associates, Workers speak the language of THINGS

OM merges physical and financial analyses, and requires great care to people issues!
Why Study OM (2) ?

Set of responsibilities:

1. DESIGN
2. PLANNING
3. CONTROL
4. IMPROVEMENT
Why Study OM (3) ?

- Boeing
- Microsoft
- Intel
- Massport
- Johnson & Johnson
- Southwest
- Lucent Technologies
- Amazon
- United Technologies
- AT Kearney
- Dell
- PRTM
- McKinsey & Company
Components of Operations Management

Product

Process

Supply Chain
Product Definition

- Product Type (Good or Service)
- Strategic Positioning
- Product Architecture
Service Vs. Manufacturing Operations

- **Intangibility** (Explicit and Implicit)

 “We manufacture perfume; we sell Hope”

 PERCEPTION Vs. EXPECTATION, ADVERTISE & MATERIALIZE

- **Perishability** (no inventory buffer)

 Can’t inventory seating room!

 CAPACITY PLANNING/FLEXIBILITY, PREVENTION/CULTURE

- **Heterogeneity** (supply and demand variability)

 Consider medical service delivery!

 HIRING, TRAINING, PLANNING, CUSTOMIZATION

- **Simultaneity** (of production and consumption)

 No safety nets for quality problems…

 HIRING, TRAINING, HR, PLANNING, CONCURRENT ENGINEERING

Slide courtesy of Prof. Charles Fine, MIT.
Process Definition

- Type (Discrete or Continuous)

- Process Architecture
 - Technology
 - Physical Flow
 - Information Flow

\{ Process Flow Diagram \}
Supply Chain Definition

• Supply Chain Architecture
 – Physical & Information Flow
 – Integral/Modular Relationships
 – Incentives

• Coordination
 – Delivery
 – Inventory
 – Information Systems
Class 1 Wrap-Up

1. **Operations Management** = **Strategy Execution**

2. **Strategic Product Definition:**
 Quality + Cost + Time + Flexibility

3. **Operations Management Components:**
 Product Devlpt. + Process + Supply Chain

4. **Operations Management Activities:**
 Design + Planning + Control + Improvement

5. **Service Operations Features:**
 Intangibility + Perishability + Heterogeneity + Simultaneity
Course at-a-glance

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Date</th>
<th>Contents</th>
<th>Readings</th>
<th>Assignments</th>
<th>Sim</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mon</td>
<td>29-Mar</td>
<td>Course Introduction</td>
<td>Course Syllabus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Wed</td>
<td>31-Mar</td>
<td>Case: Burger King + McDonald’s</td>
<td>Types of processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fri</td>
<td>2-Apr</td>
<td>Lecture: Capacity</td>
<td>Wait-in-line blues</td>
<td>1 Ex. Buildup, 1 Ex. Queueing</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mon</td>
<td>5-Apr</td>
<td>Case: National Cranberry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Wed</td>
<td>7-Apr</td>
<td>Case: Webvan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Fri</td>
<td>9-Apr</td>
<td>Lecture: Inventory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Mon</td>
<td>12-Apr</td>
<td>Case: Barilla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Wed</td>
<td>14-Apr</td>
<td>Case: Sport Obermeyer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Fri</td>
<td>16-Apr</td>
<td>Lecture: Production Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Wed</td>
<td>21-Apr</td>
<td>Case: Hewlett-Packard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Fri</td>
<td>23-Apr</td>
<td>Book: The Goal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mon</td>
<td>26-Apr</td>
<td>Lecture: Quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Wed</td>
<td>28-Apr</td>
<td>Case: Toyota</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Fri</td>
<td>30-Apr</td>
<td>Lecture: Process Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Mon</td>
<td>3-May</td>
<td>Case: Global Financial Corporation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Wed</td>
<td>5-May</td>
<td>Lecture: Supply Chain Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Fri</td>
<td>7-May</td>
<td>Lecture: Product Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Mon</td>
<td>10-May</td>
<td>Case: Sega Dreamcast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Wed</td>
<td>12-May</td>
<td>Simulation & Course Wrap-up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2002 - Jérémie Gallien
Organization

• Course uses Sloan's class server (15.760 BC H2)

• Course Materials:
 – Course Packet (Cases and Readings)

• Grading
 – Class participation 30%
 – Book review 10%
 – Case write-up 30%
 – Simulation 30%

 \[\text{in teams of 3}\]

\[\text{individual}\]

• Professional Standards