Supply Chain Planning: Summary

• Review of intent, learning goals and approach
• Review of class sessions
Intent and learning goals

• Develop your understanding of supply chain phenomena and challenges
• Develop your modeling skills and tool kit, applicable to supply chain planning
• Learn tactics, concepts and countermeasures for supply chain improvement
Approach

• Models, frameworks and general principles for supply-chain conceptualization: how to think about supply chain challenges?
• Specific tools and software: how to develop a solution plan?
• Cases and applications: how to apply in practice?

Stephen C. Graves, Copyright 2005
Overview

• Primary challenge: given uncertainty and constraints, how to design and plan a supply chain to meet certain goals?

• Types of uncertainty and constraints will vary with context

• Applicable counter-measures and tactics will vary with context
• Class 1: Introduction, Meditech
 – Supply chain dynamics with new product introduction
 – Supply chain challenges

• Class 2: Inventory Models
 – Two simple models, periodic review, order-up-to and continuous review, reorder point
 – Cycle stock set by order frequency or lot size
 – Safety stock depends on demand variability over replenishment lead time plus review period
 – Service measures: probability of stock-out in replenishment cycle vs. fill rate
• Class 3: Steel Works
 – Exercise of simple inventory models for analysis and diagnosis of inventory system
 – Opportunities for risk pooling from consolidating production and distribution

• Class 4 – 5: Supply Contracts
 – Sequential optimization leads to sub optimization
 – Contracts can move supply chain towards global optimum, facilitate risk sharing
 – Examples include buy back, revenue sharing, capacity reservation

• Guest Speaker, Mike Watson, LogicTool
 – Supply chain tactical planning in practice
• Class 6: Instron
 – Supply chain analysis of assembly system
 – Application of inventory and capacity models to size inventories and staff
 – Tactics – hold components, assemble to order
• Class 7: Multi Echelon Inventory Systems
 – Inventory models for risk pooling
 – Inventory models for postponement
 – Strategic inventory placement model
 – Reebok case – example of postponement
• Class 8: HP: Network Printer Design for Universality
 – Global supply chain for short-life-cycle products
 – Benefits of risk pooling from universality and localization
 – Different tactics for different phases of life cycle
• Class 9: Supply Chain Integration
 – Bullwhip phenomena: causes and remedies
 – Push-Pull boundary – key tactic in supply chain design
• Class 10: Safety Stock Placement in Supply Chains
 – Applications at HP – digital camera, ink jet pens
 – Where to de-couple: prior to product proliferation; prior to adding a lot of cost
 – Optimal placement depends on cost accumulation and lead times

• Class 11: HC Starck
 – Inventory tactics to reduce customer lead time
 – Intermediate de-coupling inventories, EOQ analysis for production cycle time
• Class 12: Supply Chain Integration
 – Application of RFID
 – Raytheon case study
 – Framework for evaluation of benefits

• Class 13: Strategic Partnering
 – Barilla case
 – Example of Bullwhip, VMI initiatives
Manufacturing System and Supply Chain Design: Summary

• Review of intent, learning goals and approach
• Review of class sessions
Intent and learning goals

• Develop your understanding of system design issues
• Develop your modeling skills and tool kit, applicable to system or network design
• Learn tactics, concepts, and approaches for system planning and design
Approach: Three Segments

• Manufacturing system design
• Supply chain planning and design
• Flexibility and capacity planning
Approach

• Models, frameworks and general principles for conceptualization of design issues and challenges
• Specific tools and software: how to develop a solution plan?
• Cases and applications: how to apply in practice?
• Class 1: Queuing Model for Lean Design
 – Application of queuing model for assembly system design, buffer sizing
 – Illustration of simple model to capture uncertainty and key tradeoffs
 – Model useful for building intuition
• Class 2: System Design: Queuing Models
 – Relevant queuing models and formulae for system design: M/M/1; M/M/k; M/G/k/k; M/G/∞
 – E.g.:
 \[D = \frac{\rho}{1 - \rho} \left(\frac{1}{\mu} \right) \left(\frac{SCV_a + SCV_s}{2} \right) \]
 – Design issues for recovery area for marathon: various service systems
 – Design issues for design of PC factory: parallel vs. serial stations; kitting vs. line-side stocking; location of constraint
• Class 3: System Design: Manzana
 – Diagnosis of service system
 – Issues with dispatch rules; job release; incentives; load balance
 – Queuing model for predicting response times
• Class: Guest Speaker: Mitchell Burman
 – Description and analysis of transfer lines or flow lines
 – Role of buffers for increasing throughput in lines with unreliable machines
 – Bottleneck principles apply in design of transfer line
 – Application of models for design of transfer lines at HP
• Class 4 - 5: Supply Chain Design
 – Typical network design study
 – Issues – customer aggregation; product aggregation; cost modeling; demand modeling
 – Solution strategies – optimization; modeling software
 – Hub and spoke strategies and system designs
 – Buy.Com case study
 – MetalWorks Case – opportunity to do it yourself

Stephen C. Graves, Copyright 2005
• Class 6: Decentralized Distribution Systems
 – Centralize or not?
 – Diagnosis of GM Cadillac pilot: misaligned incentives
 – Decentralized system with cooperation and search—relative performance depends on search cost
• Class 7: Revenue Management
 – Transportation nat’l Group case – application of RM to storage rental
 – Use of optimization to assess potential and provide guidelines for setting prices
 – Challenges of introducing RM in this context

• Class 8: Pricing Strategies
 – Principles of RM
 – Use of coupons (mail-in rebates) by manufacturer to achieve global optimization of SC
 – Smart pricing in supply chains
• Class 9: Supply Chain Design: Configuration
 – Optimization model and framework for supply chain configuration – selection of options at each stage of network
 – Illustration of trade off between cost and time

• Guest Speaker: Mike Romeri, PRTM
 – Supply chain implementation challenges
 – Creation of supply chain solutions
• Class 11: Procurement strategies
 – Supply contract game
 – Insights into bidding strategies
 – Need to be on efficient frontier
 – Need only compete against neighbors
• Class 10: Capacity Planning: Seagate
 – Example of capacity planning under uncertainty
 – Value of flexible capacity as an hedge
• Class 12: Flexibility and Capacity Planning
 – Framework for thinking about flexibility and its benefits
 – Principles for deploying flexibility
 – Limited flexibility can achieve benefits of total flexibility
 – Key is to chain as many plants and products together as possible
 – Assign comparable loads to each plant