Analysis of a Forecasting-Production-Inventory System with Stationary Demand

L. Beril Toktay and Lawrence W. Wein
Presented by Guillaume Roels
Operations Research Center

This summary presentation is based on: Toktay, L. Beryl, and Lawrence M. Wein. "Analysis of a Forecasting-Production-Inventory System with Stationary Demand." Management Science 47, no. 9 (2001).
Forecasting-Production-Inventory

- Make-to-Stock environment

\[P_t = \min \{ Q_{t-1}, C_t \} \]
Objective

- Minimize steady-state
 - Inventory holding costs h
 - Shortage penalty costs b
Recap: MMFE Model

- Rolling horizon H
- Forecast $D_{t,t+i}$ $i = 0,\ldots,H$
- Forecast Update

$$
\varepsilon_{t,t+i} = D_{t,t+i} - D_{t-1,t+i}
$$

- Assumptions
 - Stationary Demand with rate λ
 - Unbiased Forecasts
 - Uncorrelated Forecast Updates
Production-Inventory Model

- MRP-Type Release Policy:
 \[R_t = \sum_{i=0}^{H-1} \varepsilon_{t,t+i} + D_{t,t+H} = e^T \varepsilon_t + \lambda \]

- Inventory Policy
 \[Q_t + I_t - \sum_{i=1}^{H} D_{t,t+i} = s_H \bigg\{ \tilde{I}_t \bigg\} \]
Production Policy

- Forecast-corrected base-stock policy

\[
P^*(\tilde{I}_{t-1}) = \begin{cases}
C_t & \text{if } s_H > \tilde{I}_{t-1} + C_t \\
 s_H - \tilde{I}_{t-1} & \text{if } s_H \leq \tilde{I}_{t-1} + C_t
\end{cases}
\]

- State-dependent Optimal Policy

\[(D_{t-1,t}, D_{t-1,t+1}, \ldots, D_{t-1,t+H-1}, \lambda)\]
Benchmark: Myopic Policy

- Do not use available forecast information

\[R_t = D_t \]

- Constant Inventory

\[Q_t + I_t = s_m \]
Outline

- Model
- Steady-State Distribution of WIP
- Base-Stock Levels
- Discussion
- Conclusion
In Heavy Traffic, the WIP has an exponential distribution.

Average Excess Capacity

\[v = \frac{2(\mu - \lambda)}{e^T \Sigma e + \sigma_C^2} \]

Variance of the forecasts

Variance of the production
WIP at time n

$$X_n = \sum_{t=1}^{n} (R_t - C_t)$$

$$Q_n = X_n - \inf_{1 \leq t \leq n} X_t$$
Heavy traffic analysis 1

Consider a sequence of systems \(k \) s.t.:

\[
\lambda^{(k)} \rightarrow \lambda \\
\mu^{(k)} \rightarrow \mu \\
\sqrt{k} (\lambda^{(k)} - \mu^{(k)}) \rightarrow c < 0
\]
Heavy traffic analysis 2

\[\frac{Q_n^{(k)}}{\sqrt{k}} = \frac{X_n^{(k)}}{\sqrt{k}} + \frac{- \inf_{1 \leq t \leq n} X_t^{(k)}}{\sqrt{k}} \]

\[\frac{X_{[kt]}^{(k)}}{\sqrt{k}} = \frac{X_{[kt]}^{(k)} - m^{(k)} \lfloor kt \rfloor}{\sqrt{k}} + \frac{m^{(k)} \lfloor kt \rfloor}{\sqrt{k}} \]

where \(m^{(k)} = \lambda^{(k)} - \mu^{(k)} \)
Heavy traffic analysis 2

\[
\frac{X^{(k)}_{[kt]}}{\sqrt{k}} = \frac{X^{(k)}_{[kt]} - m^{(k)}_{[kt]}}{\sqrt{k}} + \frac{m^{(k)}_{[kt]}}{\sqrt{k}} + \sigma B(t) + ct
\]

\[BM(c, \sigma^2)\]
Reflected Brownian Motion on the nonnegative halfline

Estimated by an exponential random variable
Steady-state WIP distribution

\[
P(Q_\infty = 0) = 1 - e^{-v\beta}
\]

\[
P(Q_\infty > x) = e^{-vx}(x + \beta)
\]

- \(\beta\) is a correction term, coming from Random Walks
Outline

- Model
- Steady-State Distribution of WIP
- Base-Stock Levels
- Discussion
- Conclusion
Determination of the Base-Stock levels 1

- Myopic Policy

 \[s_m = F_{Q_\infty}^{-1}\left(\frac{b}{b + h}\right) \]

- Newsboy quantity…

- … considering the distr. of the WIP!

 \[s_m = \frac{1}{v} \ln\left(1 + \frac{b}{h}\right) - \beta \]
Determination of the Base-Stock levels 2

- MRP-type Policy

\[s_H = F_W^{-1} \left(\frac{b}{b + h} \right) \]

\[W = \max \{ Q_\infty + Y_0, \max_{1 \leq k \leq H} Y_k \} \]

- \(Y_0 \) is the difference between:
 - Total Forecast Error over the horizon \(H \) and
 - Total Capacity
Determination of the Base-Stock levels 3

- MRP-type policy: asymptotic
 \[b \gg h \]
 \[s^a_H = s^*_m + \mu_{Y_0} + \left(\frac{1}{2} \right) \sigma^2_{Y_0} \nu \]
 Proportional to the variance!

- Good approximation when
 - \(b / h \) large
 - High utilization rate
Outline

- Model
- Steady-State Distribution of WIP
- Base-Stock Levels
- Discussion
- Conclusion
Capacity – Stock Trade-Off

- No advance information
 \[s_h^a = s_m^* - H \lambda \]

- Full advance information
 \[s_h^a = s_m^* - H \lambda - H (\mu - \lambda) \left(\frac{\sigma_D^2}{\sigma_D^2 + \sigma_C^2} \right) \]

- Interchangeability Capacity/Safety Stock
- Demand variability → Capacity
Discussion

- Correlation $\uparrow \rightarrow \nu \downarrow \rightarrow S_m^* \uparrow$
- $\sigma_{Y_0}^2$ is the system variability over H not resolved at the beginning of the horizon
 - Preference for accurate early forecasts
- Optimize over all planning horizons
 $$R_t = \sum_{i=0}^{H-1} \varepsilon_{t,t+1} + D_{t,t+H}$$
- Greater costs due to
 - misspecification of the forecast model than
 - misuse of the information in production
Outline

- Model
- Steady-State Distribution of WIP
- Base-Stock Levels
- Discussion
- Conclusion
Conclusion

- Integrated view
 - Forecast
 - Production
 - Inventory
- Lots of improvement for current MRP systems
- Is heavy traffic of practical value?
Thank you

Questions?