Optimal Control of High-Volume Assemble-to-Order Systems

written by
Eric L. Plambeck
Amy R. Ward
December 15, 2003

presentation for
15.764 The Theory of Operations Management
March 4, 2004
Presentation by Ping Xu

Motivation

• Assembly-to-Order
 – hold component inventories
 – rapid assembly of many products
 – Dell - grown by 40% per year in recent years. PC industry - grown by less than 20% per year.

• Challenges of ATO
 – product prices?
 – production capacity for component (supply contract)?
 – dynamically ration scarce components to customer orders?
Overview

• Literature review

• Model formulation
 – Dynamic control problem
 – Static formulation

• Asymptotic analysis

• Delay bound and expediting component option
Literature

• ATO survey by Song and Zipkin (2001)

• not FIFO assembly

• one component and multi-product assembly sequencing — multi-class, single-server queue

• fill rate constraints
Model Formulation

Sequence of events:
1. set product prices, component production rates – remain fixed throughout time horizon
2. dynamically sequence assembly of outstanding product orders

Objective:
minimize infinite horizon discounted expected profit

Trade-off:
inventory vs. customer service (assembly delay, cash flow)

Operational Assumptions:
– assembly is instantaneous given necessary components
– customer order for each product are filled FIFO
Model Formulation - notations

\(J \) components
\(K \) finished products
\(a_{kj} \) no. of type \(j \) components needed by product \(k \)
\(p_k \) product price
\(\gamma_j \) component production rate
\(O_k \) product demand arrival renewal process, rate \(\lambda_k(p) \)
\(C_j \) component arrival renewal process, rate \(\gamma_j \)
\(c_j \) component unit production cost
\(A_k(t) \) cumulative no. of type \(k \) orders assembled up to \(t \)

\(u = (p_u, \gamma_u, A_u) \) admissible policy
(prices, production rates, assembly sequence rule)
\(Q_{u,k}(t) \) order queue-length, \(= O_{u,k}(t) - A_{u,k}(t) \geq 0 \)
\(I_{u,j}(t) \) inventory levels, \(= C_{u,j}(t) - \sum_{k=1}^{K} a_{kj} A_{u,k}(t) \geq 0 \)
Model Formulation - technical assumptions

\(\lambda(p) \) is continuous, differentiable, and the Jacobian matrix is invertible. guarantees \(p(\lambda) \) is unique, continuous, and differentiable.

Customer demand for product \(k \) is strictly decreasing in \(p_k \), but may be increasing in \(p_m, m \neq k \). \(\frac{\partial \lambda_k(p)}{\partial p_k} < 0 \) while \(\frac{\partial \lambda_k(p)}{\partial p_m} \geq 0, m \neq k \).

Increase in the price of one product cannot lead to an increase in the total rate of demand for all products. \(\frac{-\partial \lambda_k}{\partial p_k} > \sum_{m \neq k} \frac{\partial \lambda_m}{\partial p_k} \).

Revenue rates for each product class, \(r_k(\lambda) = \lambda_k p_k(\lambda) \) are concave.

Renewal processes \(O_k \) and \(C_j \) started in steady state at time zero.
Model Formulation - profit expression

infinite horizon discounted profit:

\[
\Pi = \sum_{k=1}^{K} \int_{0}^{\infty} p_k e^{-\delta t} dA_k(t) - \sum_{j=1}^{J} \int_{0}^{\infty} c_j e^{-\delta t} dC_j(t)
\]

\[
\Pi = \sum_{k=1}^{K} \left(\int_{0}^{\infty} p_k e^{-\delta t} dO_k(t) - \int_{0}^{\infty} Q_k(t) e^{-\delta t} dt \right) - \sum_{j=1}^{J} \int_{0}^{\infty} c_j e^{-\delta t} dC_j(t),
\]

where \(Q_k(t)\) is the order queue-length

\[
\int_{0}^{\infty} e^{-\delta t} dO_k(t) - \int_{0}^{\infty} e^{-\delta t} dA_k(t) = \int_{0}^{\infty} \delta e^{-\delta t} Q_k(t) dt
\]
Model Formulation - static planning problem

if we assume that demand and production flow at the long run average rates continuously and deterministically,

\[
\bar{\pi} = \max_{p \geq 0, \gamma \geq 0} \sum_{k=1}^{K} p_k \lambda_k(p) - \sum_{j=1}^{J} \gamma_j c_j
\]

s.t. \[
\sum_{k=1}^{K} a_{k,j} \lambda_k(p) \leq \gamma_j, \quad j = 1, ..., J
\]

– optimal solution \((p^*, \gamma^*)\) assumed to be unique, positive. the first order condition imply that all constraints are tight \((p^*, \gamma^*)\).

– \(\bar{\pi}\) is an upper bound on the expected profit rate.

want to show that under high volume conditions, the optimal prices and production rates are close to \((p^*, \gamma^*)\).
Asymptotic analysis - high demand volume conditions

any strictly increasing sequence \(\{n\} \) in \([0, \infty)\), \(n \) tends to infinity. order arrival rate function \(\lambda^n \), where \(\lambda^k_n(p) = n\lambda_k(p) \), \(k = 1, ..., K \).

\(n\bar{\pi} \) upper bounds the expected profit rate in the \(n^{th} \) system,

\[
\Pi^n \leq \int_0^\infty n\bar{\pi}e^{-\delta t}dt = \delta^{-1}n\bar{\pi}
\]

plug \((p^*, n\gamma^*) \) into the \(n^{th} \) system, \(n^{-1}\Pi(p^*, n\gamma^*, A^n) \to \delta^{-1}\bar{\pi} \) as \(n \to \infty \), given that \(n^{-1}Q^n \to 0 \) a.s., as \(n \to \infty \).
Asymptotic analysis - proposed assembly policy

component shortage process:

\[S_j(t) = \sum_{k=1}^{K} a_{kj} O_k(t) - C_j(t) = \sum_{k=1}^{K} a_{kj} Q_k(t) - I_j(t), \quad j = 1, \ldots, J \]

min. instantaneous cost arrangement of queue-lengths and inventory levels \((Q^*(S), I^*(S))\),

\[
\min_{Q,I \geq 0} \sum_{k=1}^{K} P_k^* Q_k
\]

s.t. \[I_j = \sum_{k=1}^{K} a_{kj} Q_k - S_j \geq 0, \quad j = 1, \ldots, J \]
Asymptotic analysis - proposed assembly policy

for the n^{th} system, the review period $l^n = n^{-\alpha}$, where $\alpha = (4(3 + 2\epsilon_1))^{-1}(6 + 5\epsilon_1) > 1/2$
Asymptotic analysis - system behavior

(See Theorem 1 on page 12 of the Plambeck and Ward paper)
Review on Brownian Motion

A standard Brownian Motion (Wiener process) is a stochastic process W having
1. continuous sample paths
2. stationary independent increments
3. $W(t) \sim N(0, t)$

A stochastic process X is a Brownian motion with drift μ and variance σ^2 if

$$X(t) = X(0) + \mu t + \sigma W(t), \quad \forall t$$

then $E[X(t) - X(0)] = \mu t$, $Var[X(t) - X(0)] = \sigma^2 t$.

variance of a Brownian motion increases linearly with the time interval.
Optimality of Nearly Balanced Systems

(See Theorem 2 on page 15 of the Plambeck and Ward paper)
System with delay constraints

propose a near-optimal discrete review control policies, which both sequences customer orders for assembly and expedites component production in an ATO system with delay constraints.