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[SQUEAKING] [RUSTLING] [CLICKING]

DAVID KAISER: So today, we are talking about the reception of Einstein's work from 1905 on the electrodynamics of moving
bodies. So we'll talk about the reception of what we have come to call the Special Theory of Relativity.

So as a quick reminder, we're going to-- sorry, excuse me. The class today has three main parts, like they usually
do. We'll talk about some of the early reactions to Einstein himself and to this body of work. And then we'll look
at two specific examples of those reactions in a bit more detail.

Get more of a sense of what ways were people could have engaging with Einstein's paper from 1905, what did
they think it was really about, what did they get excited about, what did they ignore that otherwise seem to have
been really important to Einstein himself.

So we're going to talk about not just did people read the paper and make use of it, but in what specific ways?
How were they creatively making this work relevant from where they sat intellectually and institutionally?

And we'll see that sometimes that that diverged-- sometimes in dramatic ways-- from what Einstein himself
thought was most relevant or most interesting or most important about his own work. And that's a theme again
we've seen already a few times so far in this class. Different people engaging with Maxwell's equations in
different ways. It's a theme that we'll see really throughout the entire semester.

And here's a class I like-- this is pretty fun material because I think we get to really sit with some examples in
some detail and really watch people wrestle with what was a fairly new material, Einstein's paper from 1905.

So just a reminder. What did we cover in our previous discussion just on Monday? Einstein had many different
threads that he brought together in this paper from 1905 entitled, "On the Electrodynamics of Moving Bodies."
He was a recent college graduate. He was working off-hours on his PhD thesis. He had a full-time day job working
at the patent office in Bern, Switzerland at the lowest level, entry-level job of patent officer third class.

And in the evenings, he would hang out with his friends like Maurice Sullivan and Conrad Habicht and another
friend, Michelangelo Besso, in a small circle. And they would read physics and philosophy together, and they
called themselves the Olympia Academy even though it was really just three recent graduates drinking beer in
the pub talking about things like the work of Ernst Mach. It's not a bad way to spend your time after college.

So one of the people they were really interested in was Ernst Mach, and again, we have this great reading that
was on the Canvas site I think designed for this for Monday's-- this past Monday's class by our own Amanda
Gefter, one of our TAs, who helps us really even more understand what was Mach all about, what did Einstein
take from Mach's work? And so I encourage you to go back and reread Amanda's piece as well.

So Ernst Mach is this Viennese polymath who introduced this philosophy of science in the later years of the 19th
century, really during Einstein's childhood, that came to be called positivism. And as far as Ernst Mach was
concerned, the best way to make progress scientifically was to focus on objects of positive experience-- that's
where the positivism comes from. Things we could really concretely observe or measure. And not focus on things
that could never, even in principle, be subject to these kind of empirical inputs.



So we had this extensive, often very biting, very significant critique of Newtonian physics, which Mach was-- as
far as Mach was concerned, was riddled with these things that could never ever become objects of positive
experience. And that really was very, very inspiring for young Einstein and his circle of friends.

So one of the lessons that Einstein took from that, among several, in these years leading up to around 1905 was
that it would make sense to focus on kinematics, the motion of objects through space and time, things we could,
at least in principle, really measured and observed, rather than starting our inquiry with dynamics, the study of
forces, that was really turning on its head, what had become quite a standard way to approach topics like
electrodynamics.

We saw when Hendrik Lorentz considered electrodynamics. He would start with the forces exerted by the ether
on objects and so on. Einstein said, let's start with kinematics first.

It was that kind of thinking that led him to postulate these opening postulates in his 1905 paper, which hopefully
is now quite familiar to you in these opening few pages. This is the subject for your first paper assignment. And to
paraphrase these two postulates that Einstein elevates in those opening paragraphs, the first is a extension or
generalization of an idea that was actually centuries old by this point. He was really building on Galileo's work.

And Einstein says, not only should the laws of mechanics be valid for any observer who is moving at a constant
speed, as long as they're not speeding up or slowing down-- they're not accelerating, then all the laws of
mechanics of ballistics of a ball you might toss and play catch, all those laws are valid whether you're on a boat
moving at a constant speed down the river or standing still on the shore.

Einstein says, that's true-- that should be true for all of physics. For electricity, for magnetism, for optics, for
thermodynamics. So part 1 is elevating or generalizing what was already a fairly familiar notion to many, many
physicists. And part two, at least at first, he says, it looks apparently irreconcilable with the first.

The second postulate, according to Einstein, is that the speed of light, c, is a constant independent of the motion
of the source. And we now know-- he came to that in his own private thinking, or in talking with a small circle of
friends-- by a series of these thought experiments like, what would it be like if you could catch up to a light wave
like this surfer riding at the same speed as the ocean wave? You would see this frozen field configuration which,
Einstein was convinced, could never really happen.

So how do he make sure no one gets caught in that absurdity, makes sure no one could ever catch up to a light
wave? Well, if light's always going to travel at a fixed speed no matter how fast you're chasing after it.

If I'm on a supersonic jet plane, I'm still going to see the light wave travel past me at this fixed speed of light,
then no matter what fancy engines I sup up on my means of transportation, I will never, ever be like this surfer, I
will never catch up to and move at the same speed as that light wave.

And that was, Einstein considered, really central as a postulate. He doesn't prove it, he doesn't even really
motivate it in this paper very strongly. He elevates it to an assumption then sees what will follow.

And then it's from those starting postulates where, again, just in the opening few pages of this article, where he
comes to what he calls the relativity of simultaneity.



That events that we might consider to have happened at the same time, to have been simultaneous, will not
appear to have been simultaneous to an observer who is otherwise fully legitimate, meaning all the laws of
physics should hold perfectly valid for her, she just happens to be moving at some constant speed with respect
to us.

We will disagree on what counts as simultaneous. And from that, Einstein was convinced, would lead these other
phenomena like length contraction and time dilation, not because of forces exerted by an ether, but because we
disagree on when to implement our measurements, because we disagree on what counts as simultaneous
events.

And that comes for him-- from starting with kinematics, not dynamics. And again, that's the form of reasoning
that Einstein puts into those opening pages of his paper from 1905. OK.

So what were the early reactions to that body of work? Remember, it was published in, really, the leading, or
certainly one of the leading journals in Western Europe for professional physicists. It was a perfect venue to try to
get some attention. And yet, we now know historically the first reaction was no reaction at all. The baseline
summary for today's class is no one paid attention or very few people paid attention.

We now know Einstein's name. We might own Einstein's swag-- T-shirts and coffee mugs and bumper stickers,
but that simply was not the case in 1905 or 1906 or 1907. It really was quite a delay.

So at the time Einstein, as we saw, was this really little-known patent clerk. He was not employed as a research
scientist. He was not teaching in a university. That had been his ambition. He just was not able to get that kind of
job at first.

He was publishing, before then, perfectly adequate, not very special articles on other topics in the main journal.
He was building up a kind of portfolio of perfectly competent, not very earth-shattering work. So no one was
hanging on, waiting at their mailbox to get the latest issue of the journal to see what Einstein had done lately.
Very few people noticed anything at all.

So this next point is one of my favorites. Not only did Einstein still not get the kind of job he had most wanted, an
academic position, he didn't even get a raise or promotion at his current job. He remained a patent clerk third
class even after publishing all of these articles even in the space of just one year within the leading physics
journal. Not just the one we've looked at so far, even others we'll look at soon. He didn't even become patent
clerk second class. This was really, really a complete shattering silence in response to his work.

So one of his close friends, an exact contemporary of his, Max von Laue, whom he happened to meet, who was
following a more traditional physics research and academic career-- von Laue was the same age as Einstein, but
was making advances of the sort Einstein had hoped to make but was not yet making. Von Laue did his PhD
quickly, he got a very prestigious postdoctoral position, he was soon teaching at a central research institute.

Von Laue had befriended Einstein, they would talk, and because of his direct connection, Max von Laue and a
very small number of others began trying to get a little more attention to Einstein's work on what we would now
call special relativity.



So for example, from his better-established academic position, von Laue wrote a review article that people did
pay attention to. He was seen as a rising person to follow. He wrote an article fully four years later in 1909 which
helped to bring Einstein's work to others' attention, Einstein's work and that work of others as well.

So a few years later, some more people begin to pay attention not because they were following Einstein, per se,
but a little bit of a kind of percolation starts. So reaction one is really no reaction at all. The second reaction
didn't make Einstein much happier.

So when people did notice the work, the minority, the exceptions to that rule who paid any attention at all, they
tended to read Einstein's paper, the one that for all immersed in now, as a clever rederivation of what was, by
then old news. They saw this as a really kind of smart way to get back to the results that leading physicists, like
Hendrik Lorentz and Henri Poincare in Paris and others, had been finding for a decade since the 1890s.

Remember, we even-- we saw this in our own class discussions a few sessions ago. Hendrik Lorentz had already
published on length contraction. He was directly responding to the Michelson-Morley experiment in Lorentz's
case. He hadn't really argued about there should be a contraction.

He had derived quantitatively an expression involving this factor gamma that we've already seen many times, 1
over the square root of 1 minus v over c squared. That was the exact same quantitative result to which Einstein
had arrived by very different forms of reasoning.

Lorenz was a very senior, very established, very productive mathematical physicist. People really did want to see
what was Lorenz's latest work. They really would hang on his latest articles.

So the small number, the exceptions who noticed Einstein's work in 1905 said, oh, I've seen that before. It's a
clever way of getting back to what was by then 10-year-old results. And so if anyone gave Einstein credit in the
early years, it was as like second fiddle. They would refer sometimes to Lorenz's theory, Lorenz's
electrodynamics, or a few of them would refer to the Lorenz-Einstein theory. No one referred to the Einstein-
Lorenz theory.

So the second reaction didn't make Einstein much happier. Either people ignored it or they somehow, as far as he
was concerned, misunderstood this as a trivial reworking of more established results.

So even when people gave Einstein's work any attention within this rubric of the framework that Lorenz had been
establishing throughout the 1890s, few people seem to notice that the conceptual underpinning was really quite
distinct. Some of the equations were identical, the same factor of gamma, the same coordinate transformations
and so on. And yet, they seem to be based, as we would now see with hindsight, on very, very different starting
assumptions.

Lorenz's work was all about the ether. The ether wasn't only central, it was exerting forces, these dynamics
according to Lorenz's view. It was literally squeezing the atoms and molecules in the arm of Michelson's device. It
was all about the elasticity and the forces exerted by a physical ether.

And as we've seen in Einstein's case, in the opening few paragraphs, he's dismissed the ether as superfluous. His
work is not about the ether. He says the ether was a century-long distraction, which is a very different starting
point even though they both arrive at some very similar equations. So even when people gave it attention, they
misread it or they read it in ways different from how Einstein probably had hoped.



And again, this lasts not just until 1906 or '07. Even after 1909, review articles by people like Max von Laue.
Here's a great example that I take from Andy Warwick's work. We had some more of Andy's work to read for
today, and I'll talk about that later in today's class.

But he has this great example in his article. That even as late as 1913-- now we're talking nearly a decade later.
So fully eight years later. A leading British physicist had written about what he called "The abstruse conceptions"
of Einstein's 1905 paper, which were, quote, "most foreign to our habits of thought," and "as yet scarcely anyone
in this country," by which he means Britain, "professed to understand or at least to appreciate."

So even the people who knew there was this person named Einstein who worked on the electrodynamics of
moving bodies, this was not kind of commanding attention in the way that we might expect because we know
how the story ends. We know what Einstein would go on to be recognized for. It was a pretty slow transformation.

And we see this reflected in Einstein's own career as well. So as I mentioned, one of my favorite factoids for the
entire class today, Einstein didn't-- not only didn't leave the patent office, he didn't even get promoted within the
patent office in the light of this quite extraordinary work, his first break, the first opportunity for the kind of
career we know that he really wanted-- we know from his personal letters that have survived and are available,
he had been hoping for an academic position from his early, early days.

His first big break along that new career path comes actually in 1909, around the time that von Laue was writing
that review article and others, where he was offered an assistant professor position in Zurich, which was actually
very exciting. That's where he had done his own school-- his own university training.

Then two years later, he's given a promotion, an offer to move now to Prague. He spends about one year there,
then he's hired back at a different institution, back in Zurich. And then finally, in the spring of 1914, in April or
May, he's invited to join the very, very prestigious Prussian Academy of Sciences in Berlin.

So roughly a decade later, he's promoted to the kind of position he'd been really angling for all along, and it
comes not one year, not two years, not three years later, but nearly a decade later. And after a lot more work has
come out, not just on the basis of this 1905 work.

So has a slowly accelerating academic career starting from this very unusual starting point. So I'll pause there.
Any questions on that early discussion of the reception of Einstein's work? This is a good moment to remind you,
try not to annoy all your professors in college. You'll get better letters of recommendation that will help you on
the job market.

That was one of many things Einstein had done so poorly because he was kind of a dummy. Einstein, as I like to
say, was no Einstein when it came to his own schooling. So that's life lesson number one for 8225. Write that
down. Any other questions about Einstein's-- the early reception of either his own career or this body of work? If
not, I'll gladly press on.

OK. If questions come up, put them in the chat, we'll have more time to talk about them. But I'll go back to the
slides. We'll talk about now this next part. We can dig in a bit more to-- an example of a bit more significant
engagement, a stronger reaction and response to Einstein's work.



And that came actually somewhat surprisingly from one of Einstein's former mathematics teachers, Herman
Minkowski. So Minkowski was a very elite established professional mathematician. He was a professor at the
ETH-- that's the university that Einstein had worked so hard to get into, the Eidgenossische Technische
Hochschule, which I never tire of trying to pronounce, we can just call it ETH. That was the Swiss Federal
Polyatomic Institute in Zurich, kind of like MIT.

Minkowski was a mathematics professor, not a physicist. And through a kind of roundabout way, Einstein's work
was brought back to Minkowski's attention a few years later post-publication.

So it turns out, Minkowski was certainly not looking for Einstein's work, and we have, again, some wonderful,
juicy, colorful letters that survive of Minkowski basically talking behind Einstein's back and vice versa. So we
know that when Einstein was a university student, he'd worked so hard to get into ETH. What did he do? He
began cutting classes, especially classes of faculty for whom he had little respect, and that happens to include
Herman Minkowski.

So even though he was registered and took classes for credit from Minkowski in the Math Department, he rarely
showed up, and Minkowski noticed that. So Einstein used to borrow notes from several friends, from his, at the
time, girlfriend, who became his first wife, Mileva Maric.

She was also a physics student at the ETH and doing actually quite well in her mathematics classes. She would
very dutifully attend, take very careful notes, share them with her good-for-nothing boyfriend Albert Einstein. He
would cram before the exam and kind of do OK.

Another one of Einstein's close buddies from undergraduate days, Marcel Grossmann, did the same thing.
Grossmann went on to a career as a mathematician himself. So Einstein would basically cut classes from people
like Minkowski and then catch up and just skate through. He would just like barely pass by cramming the night
before. Don't do that on paper 1, please.

So a friend of Einstein's encouraged the professor, Minkowski, to read this 1905 paper a few years after it'd come
out. And Minkowski wrote back, I really wouldn't have thought Einstein capable of that. He wrote-- Minkowski
wrote to another colleague, Einstein's paper came as a tremendous surprise, because in his student days,
Einstein had been a lazy dog. He never bothered about mathematics at all. So much for Minkowski having a high
opinion of young Albert Einstein.

So once Minkowski was convinced to even look at this again a few years post-publication, he quickly became
convinced that Einstein was still a lazy dog or at least was still making things unnecessarily complicated. So
Minkowski thought Einstein had a few interesting ideas in this paper from 1905, but had really messed things up
as far as Minkowski was concerned. That he had really missed the main point of his own work.

Minkowski was convinced that Einstein's understanding of Einstein's work was not the best understanding at all.
So in fact, Minkowski set about reformulating this work in his own way in around 1907, it was actually published
posthumously in 1908. Minkowski died rather young, so he gave this famous lecture and it was published soon
after he passed away.



Who was this person, Herman Minkowski? He wasn't only a mathematician at the ETH in Zurich, he was, in
particular, a geometer. His specialty within mathematics was pure geometry. In fact, he was like an evangelist
for geometry. He had written a book, first published in 1896-- the cover here is from a later edition-- called the
Geometry of Numbers. He actually wanted to remake abstract fields of pure mathematics like number theory,
make those part of geometry as well.

So he wasn't only an expert in geometry, he thought geometry would unlock the secrets for all of math and that's
all he cared about. That was the key to everything. So he really was a geometer all the way through.

So when he then later turned to Einstein's work about two years after it had been published, he did so as a
geometer. Not as a physicist, not as a philosopher interested in math or positivism. To Minkowski, Einstein's work
held lessons that were best understood through using the tools of geometry.

So one of the first things Minkowski did is something we all take for granted today. Many of you have probably
seen this before. We now will call these things space-time diagrams, or often we'll call them Minkowski diagrams.
These were one of the things that Herman Minkowski introduced once he grudgingly began to pay attention to
this paper of Albert Einstein's.

So what are we going to do with these space-time diagrams? To make things simple, we'll consider motion in only
one direction of space, let's say the x-axis. So quite typically, the convention very quickly became, we'll measure
locations in space along the horizontal axis or the x-axis. And we'll measure changes in time along the vertical
axis. So now we have a two-dimensional plot to measure-- with which to make sense of motion in space and time.
These are space-time diagrams.

What are the next things that became very, very common very quickly with these kinds of graphs was to use very
convenient coordinates, coordinates in which light waves would travel one unit of space, one tick along the x-
axis, for every one tick, for every one unit of time.

So for example, if we're going to measure time in seconds, a very common unit with which to measure time, then
we better not measure spatial distances in either meters or feet or kilometers or even parsecs. We're going to
measure them in light-seconds, which is the distance light will travel in one second.

So we're going to measure the distances in units such that light will travel to one of those spatial units in one unit
of time. For example, seconds and light-seconds. So what we're really doing, in effect, is scaling the speed of
light to be 1.

And therefore, when we go to plot the motion of light rays or light waves on these space-time diagrams, they'll
follow these very simple 45-degree diagonals. Their slope is fixed to be always inclined at 45 degrees because
we've chosen our coordinates such that they will always traverse one unit of space in one unit of time.

Now why will they always travel at that slope? Because if we take Einstein's second postulate seriously, light will
always be traveling at that single universal speed, the speed of light. Therefore, they'll have a single fixed slope.
They could travel off to the left, and therefore, then we'd have a worldline like this inclined at 45 degrees
pointing off to the left. They can travel to the right, but they can't change the slope. That's the impact of
Einstein's second postulate.



OK. So far, so good. We can do things like we can plot more than just the path of light. Here's this-- this is real
data. This is how I spend my time these days in quarantine. I don't go anywhere.

So my position, the plot of my motion through space and time is really easy now. I just sit in one location in
space, like this chair, and I don't move. So all that happens is time ticks inexorably by, I just get older and older
and older, but I'm not moving around, or barely.

So we can plot what's called my worldline. That's the vocabulary that gets used now with these space-time
diagrams, dating really back to the era of Herman Minkowski. So for any object, we can chart its motion through
space and time in one of these plots. If it's not changing its location, but only moving through time, it will have a
straight line heading straight up the page. It will move-- if it's light, it's going to move at this fixed inclination or
slope.

And of course, if my family forces me to get off the chair and go out for a jog, then I'll have a more complicated
worldline. I'll be moving, I'll be changing my location over time, not nearly as fast as light, not nearly as fast as
shown here. This is like supersonic jetpack.

But I will sometimes be moving to the right at some speed. I might change directions later and move to the left.
But whatever I do, I'll be moving at a speed slower than light, that's for sure. And therefore, the slope of my
worldline is limited to never be as sharp as inclined as a 45-degree line.

So I might have a nontrivial worldline, but it's a way, nonetheless, to chart my motion through space and time.
Many of you have probably seen that before. This comes from the geometer Herman Minkowski trying to make
sense of Einstein's work. OK.

Now let's go back to one of the scenarios that Einstein introduced in those opening pages, the part that you have
for your assignment of his 1905 paper. Let's imagine that I'm standing still-- so I'm back to my very trivial
straight-up-the page worldline, I'm back in my chair. And I'm standing exactly equal distance from two colleagues
who are at locations A and B.

So I'm an equal distance along the x-axis from each of my colleagues. I've asked them to please shine their
lanterns at me at the same time. If they've really done that, then I'll receive the light waves from each of them at
the same time. The light wave traveling from B toward me and the light wave traveling from A toward me will
arrive at my location at the same time-- sorry.

And if so, then I know that A and B emitted their light waves simultaneously because the speed of light is fixed.
So the light wave from, say, the lantern held by person B couldn't have either sped up or slowed down and had
no choice but to travel along this worldline at exactly 45 degrees. Likewise for the light wave from my friend at
position A.

So if I know I'm equal distances along the x-axis from A and B And I receive both light waves at the same time
here, then they must have been emitted simultaneously there. So now I can establish lines of simultaneity. Every
point along this x-axis would have the same value of time in my coordinate system.

The value of t on my t axis is the same. So the way I've set things up here, event A corresponds to the time t
equals 0, event B corresponds to time equals 0 at time equals 0 sitting here on my chair. Likewise, every other
moment line of simultaneity is parallel to the x-axis, they're all parallel to the line t equals 0.



So I can imagine every event in my set of coordinates that had the assignment t equals 1 instead of t equals 0.
All of these were simultaneous with each other, not simultaneous with events A and B, or every point along the
line t equals 2 and so on. This is, I'm sure, very, very familiar.

This is how we use graphs all the time. Minkowski's trying to just give us a more straightforward geometrical
interpretation for what Einstein belabors in those opening pages about what do we mean by simultaneous events
in our frame of reference. These are events that occur along a line of simultaneity.

Well, now we can use our set of coordinates, our x and t, and map the motion of some other object that's moving
with respect to us. For example, Einstein's favorite object, a train. So now we can chart the worldlines of the back
of the train, the middle of the train, and the front of the train as the entire assembly moves past us while we
stand still on the train platform.

So this is our mapping of the moving object's motion from within our set of coordinates with respect-- the
coordinates mark our frame of rest, and we're going to watch this moving train move through our coordinates.

Now remember, we have a partner who rides in the middle of the train, again, very much like what Einstein was
describing. So we have a colleague who's sitting in the middle of the train. She knows-- she's exactly equal
distance from the front to the back of the train. She's asked friends on the train to shine their lanterns toward her
and she'll be able to determine whether or not her colleagues A and B shine their lanterns toward her
simultaneously.

Well, light can only travel along 45 degrees on these diagrams for me or for her. Even on the moving train, the
light wave that's emitted from point B doesn't speed up, it can only but go along a 45-degree angle. That's the
real force of Einstein's second postulate.

Likewise, the light wave that's emitted from point B can only travel at the speed of light. So in my coordinates, as
much as in my colleagues coordinates on the train, those light waves must travel at 45-degree lines, at the
constant speed of light. So our colleague who's moving on this train sitting in the middle, she receives the light
beams from point A and point B at the same time. So now she knows those emission events must have been
simultaneous.

How could they not have been? She's an equal distance, the light waves couldn't have either sped up or slowed
down. So therefore, all the points along this new line, we can call the x prime axis, all those events occur along a
line of simultaneity for her.

In the moving train, she knows exactly how to establish which events are simultaneous. She can take advantage
of light waves, they travel at a universal speed. It just turns out that what events are simultaneous for her no
longer match the set of events that are simultaneous for us.

She has a different set of lines of simultaneity. And Minkowski was saying, in effect, you idiot, Einstein, it's just a
coordinate rotation. You're just establishing a new set of coordinates like any student of geometry should be able
to do. He said it only slightly more nicely in his published article.



Meanwhile, the t prime axis is nothing other than the worldline of the zero point of space for the moving
observer. That is to say, it's the worldline of the back of the train. The origin point of her coordinates is, say, the
back of the train, x prime equals 0. She can measure any distance she wants with reference to the back of the
train. She's moving with the train. She can always lay out meter sticks and measure how far the front of the train
is from the back.

So the origin, the spatial origin of her coordinates is the back of the train, how does that move through space and
time? That just becomes her t prime axis. Much as our location of the point x equals 0 as it just sits still and
moves through time, that maps out for us the t axis.

The next thing Minkowski showed very easily for him as a geometer is that the angle between the x and the x
prime axis, some angle theta, is exactly the same angle as that between the t and the t prime axis. In fact, that
angle is directly related to this ratio v over c.

So the faster the relative motion between us and the train, the more steeply these lines are inclined, the larger
the angle. As the relative speed v rises with respect to that constant universal speed, the speed of light, this
angle becomes larger, the x prime axis becomes tilted even more far away from x, the t prime axis gets tilted
even more inward away from t.

But all we're doing is establishing a new set of axes with respect to which we can mark the motion of objects
through space and time according to the geometer Herman Minkowski.

So now we come to some of these strange-sounding ideas that Einstein, again, had belabored as far as
Minkowski was concerned. Einstein belabored with all this lengthy discussion of Ernst Mach-inspired
measurement procedures. Minkowski says, it's just more geometry. Let's take the example of length contraction.

We all agree, the procedure for measuring lengths is to measure the location of the front of the object and the
back of the object at the same time and then take the difference. OK. So we measure the length of the train to be
this length I've called L prime.

We have our friend at the back of the train at position A, we have our friend at the front of the train at position B
prime. We know those are simultaneous because they lie along a line of simultaneity for us, or a little bit more
concretely, both the event A and the event B prime share the coordinate t equals 0. They have the same time
coordinate in our coordinate system, in our reference frame.

They lie along a line of simultaneity. So we've therefore marked the position along the x-axis of the front of the
train and the back of the train at the same time in our reference frame. Now we can just take the difference,
subtract the location of this point B prime along the x-axis, subtract it from the origin. OK. That's our length of the
train. Front and back, same time, length L prime.

Meanwhile, for our friend who's riding along the train, she knows exactly which events are simultaneous because
she can have her friends test this with the exchange of light signals. And she knows very, very clearly that
events A and B are simultaneous. For her reference frame, A and B lie along a shared line of simultaneity, just
not our line of simultaneity.



So her friend at the front of the train can mark that location, her friend at the back of the train can mark that
location. We know they're doing it at the same time in the moving reference frame. Take the difference, it's the
difference L, which, as you can see now, just trivially is longer than L prime.

So what Einstein called-- and for that matter, Lorentz called length contraction, our measurement of the moving
object is short compared to the measurement conducted by someone moving with that object. L prime is
demonstrably shorter than L. And Minkowski says, in effect, of course it is.

We're just projecting our measurements onto different sets of axes. We are geometers, we reckon objects with
certain sets of coordinates, and we just happen to have different coordinates with which we're making sense of
the world. He doesn't just derive the qualitative phenomenon of length contraction, he gets exactly the answer
that both Einstein and Lorentz had gotten, even though they had very different forms of argument.

He even gets the exact form of this gamma, because as you may remember, the angle here between x and x
prime is directly related to v over c, as is the factor gamma, a few lines of algebra, not very hard, to see the
relationship between this line segment and that line segment.

What's important, again, to underscore is not the algebra-- I'm confident we can all do that. Is to say that for
Minkowski, this is not about the ether, it's not about Machian observations that are subject to positive
experience, this is just geometry as we transform between different coordinate systems. And you can almost
hear him saying, "No duh!" to Einstein who cut all his classes.

Minkowski goes on in this article, first worked out in 1907. Using these space-time diagrams, he then shows that
the full Lorentz transformation was nothing but geometry. Remember, to Minkowski, everything was geometry.
This was just a rotation in space-time.

Now to warm up for that, again, we'll do something probably a little bit familiar to start. We'll talk about just an
ordinary x-y plane. Two directions of space that are perpendicular to each other, the Cartesian plane, or, if you
like the Euclidean plane. We can lay out our coordinates.

x will be our horizontal axis, y is at right angles heading up the page. These are two directions of space. We can
identify some points in the plane. We'll call that point P. We can label the location of that point in our coordinate
system. We'll project what that means. Really, is we're projecting the location of point P onto our perpendicular
axes.

So we label the x-coordinate of point P as its projection along the P-- excuse me, along the x-axis, it has some
value x1. We identify the location of point P, the projection along the y-axis, that's its y-coordinate y1. Fine.

Now we all know-- even Einstein knew-- we're allowed to rotate our coordinate systems in the x-y plane. What if a
friend of ours had used an inclined set of coordinates, x prime and y prime, that are rotated by some fixed angle
away from our original coordinates?

The point P hasn't moved. All we've done is change the labels we assigned to the coordinates. In our new
coordinate system, in the rotated coordinates, the same point P, which itself hasn't moved, is assigned a different
value of its x prime coordinate projecting now to the new axis and a different value of its y prime coordinate
projecting to the new y-axis.



These are related, quite straightforwardly, by a rotation matrix, by-- if we want to be a little fancy pants, we could
say it's a one-parameter group of the rotation in two dimensions. But it's just a set of sines and cosines to take
into account how the x and x prime axes are related to each other by this angle theta and the y and y prime
axes.

So it's actually very straightforward to relate the coordinate labels in one set of coordinates to those in the other.
Nothing magic has happened. We can see that what I had called x prime was related to x in this very
straightforward fashion, taking into account the different coordinate systems and their angle between them, and
likewise, y prime in terms of x and y.

So Minkowski says, that's all that's happening with space-time diagrams as well. Now let's imagine some event in
space-time. So now we're going back to these Minkowski diagrams, the spatial direction runs along the horizontal
axis, the time direction runs vertically, we have some event that happens in space and time.

That is to say, we assign to it a time that happened at 12:00 noon at my house, a spatial location, some point.
Now the observer on the train is going to label that exact same event, but give it different coordinate values
because her coordinate system is different. The lines of simultaneity for her frame are different, the worldline of
x equals 0 for her is different.

So she has the x prime, t prime coordinate. She's still perfectly capable of labeling the event P and assigning to it
values in her coordinates x1 prime and t1 prime. And again, remember, the angle of inclination here is directly
related to the relative speed between these two sets of coordinates, these two reference frames.

Moreover, what Lorenz had derived because of the-- what he assumed to be the elastic forces of an ether acting
on the molecules, what Einstein had derived quite differently by thinking about the relativity of simultaneity,
Minkowski says is just the set of rules for making rotations in this only slightly more complicated geometrical
space. It's still basically like making rotations in the x-y plane.

We have, again, to be fancy pants, a one-parameter family of rotations. The one parameter that changes now is
the relative speed v, or if you like, the ratio of v over c, but of course, c is a universal constant. The only thing
that really varies here is the speed little v.

We have some other set of rules. These take the place of our sines and cosines of the relative angle. So once
again, we can now trivially, geometrically relate the labels that the moving-- the person on the moving train had
assigned to the same event P, relate those to the labels that we assigned standing still on the station platform.

He gets precisely the Lorentz transformation, not because of the ether, not because of Einstein's arguments
about how we perform measurements, but because he's just a geometer making rotations in a particular kind of
two-dimensional space.

So to Minkowski, the Lorentz transformation itself was nothing but geometric rotations in space-time. Again, so
not surprising since we know Minkowski is a geometer above all. OK.

Now this gives us something that's actually new. He's no longer just rederiving stuff in a new way. Now he gets
stuff that neither Lorentz nor Einstein had actually recognized or realized. This next part comes really from
Minkowski taking geometry very seriously.



As he knew as a geometer, even in ordinary x-y plane-type geometry, when we can perform rotations, the
coordinate labels of a given point will change, but some quantities remain unchanged even under rotations. For
example, the distance. So what's the distance between the origin of my coordinates and the point P? We'll call
that distance d. That doesn't change even if I change the labeling of my coordinates.

So when I rotate by some angle theta, I change the labeling the description of x and y versus x prime and y
prime. I didn't pick up the point P to move it further from the origin. The distance between, say, the origin and
point P is invariant under those rotations.

And again, it'll take you about 28 milliseconds to figure that out for the geometrical case just using sine squared
theta plus cosine squared theta equals 1. Use the usual trigonometric identity between these trigonometric
functions, and then it's very straightforward to see that the distance is invariant even though the coordinate
labels have changed under rotation.

That's what now becomes really new that Minkowski pushes forward as the first real concrete advantage as far as
he's concerned of this geometrical approach. There's a generalization of distance that Minkowski introduces. It
comes be called the space-time interval, often abbreviated by the letter S. It's like a version of distance for
space-time instead of only a spatial problem, only space-space.

So what is this space-time interval that remains unchanged even though the coordinate labels might be switched
under these coordinate Lorentz transformations? So again, we come back to this way to relate our x and t
coordinates to our x prime and t prime, that's what Minkowski is rederived from his rotation.

And now he shows, using the definition of gamma, that just for the exact same reason that the Euclidean
distance, little d, in the previous example remains unchanged, just because of the definitions of sine and cosine
of a given angle, given the definition of gamma, that way of relating the kind of rotation, the degree to which x
prime is inclined with respect to x, we get an unavoidable outcome.

That whether we had chosen to label the event P in our x and t coordinates or x prime and t prime coordinates,
the space-time interval, little s, has remained unchanged. Something remains invariant even though our different
descriptions of spatial distances and temporal durations have changed.

So to Minkowski, this shows that really, geometry-- in particular, the geometry of space-time, that, to Minkowski,
becomes the only thing that matters. Not the ether, not this Mach-like show me how I can taste it or measure it
or make it subject of positive experience, it's this geometrical feature of space-time. And in particular, not space
and time separately. It's actually Minkowski's work, not Einstein's at first, that really introduces this notion of a
union of space and time that very quickly becomes called by a single name, space-time.

So that's what Minkowski is convinced is the only really important insight or outcome of Einstein's work, it is
geometrical. So as he famously concludes in this article-- it was published soon after he passed away, laying out
all this work on space-time diagrams, the invariant space-time interval and so on.

He says, "Henceforth space by itself and time by itself are doomed to fade away into mere shadows." These are
really just projections on a kind of idiosyncratic choice of coordinate axes. These are mere shadows. "And only a
union of the two--" a single union of space-time-- "will preserve independence."



So let me pause there again and ask for any questions. Any questions on the Minkowski stuff and on where he
was coming from? So Silu asks, what were Einstein's reactions to Minkowski? Good, very good. So the first
reaction of Einstein to Minkowski was also thoroughly predictable. He hated it. He never liked Minkowski as a
person, he cut his classes. He was like, oh look, this guy still understands nothing important. The feeling was
totally mutual.

So Minkowski thought Einstein had made a mess of things and only grudgingly paid attention. Einstein read this
paper and said, oh, this guy understands nothing, he's not reading Mach, he missed the real conceptual
innovation. He's just playing with axes.

Now the difference was, Minkowski died and Einstein didn't in 1908. So Einstein later, over-- and in fact, we'll look
at this in our upcoming class session. Over the next several years-- again, about four years after Minkowski's
work was published, did Einstein slowly, grudgingly, with other kind of inputs and nudges, begin to appreciate the
geometrical view that Minkowski was putting forward.

Einstein's original reaction was, this guy still doesn't get it. I would cut his classes again if I were still there. I
mean, really, it was just this mutual, like, blah. And it's really about four years later, as we'll talk a bit about in
the next class, that Einstein grudgingly comes along to say, geometry is really cool, space-time as a unified
notion actually seems important.

And then he says, oh, I wish I had cited all that math after all, and he goes back to one of his friends, Marcel
Grossmann, and says, oh, not only can I borrow your notes, can you teach me all the stuff I should have learned
when I was in college? Lesson number 3 is don't act like Einstein.

And Gary asks, if Minkowski had lived, who would have been deemed the greater genius? Oh, that's an
interesting question. I don't know. That's a time-varying question. In 1909, still Minkowski. In 1915, I'm not sure.
In 1945, I don't know. It's interesting to see. And I imagine the mathematicians then, as now, would herald
Minkowski's work for a lot longer. We'd see, I'm sure, some different opinions continue to vary.

Jesus writes, it's scary to realize that nobody cared too much about these groundbreaking results for so long.
Makes me wonder what kind of groundbreaking work may have actually fallen through the cracks and never
gotten a full exploration at all. Yes, that's a fair point.

That's something we can keep in mind throughout this whole semester. Not only-- there's all kinds of
gatekeeping about who determines at what time what work is worth paying attention to. And institutions play a
role, individual rivalries play a role. Soon, we'll come to examples where worldly events play a role, well beyond
the control of any given individual or institution. Sexism plays a role, racism plays a role.

I mean, there's all kinds of things that factor into who determines this is of value and worth paying attention to at
any given time. And that's a general historical lesson we grapple with all the time, not just in the history of
science, but much more generally. And we'll have a lot of examples of that. Really, actually, more examples even
pretty soon in our own class, alone examples we might think of from other instances.

Here's an example where, to his credit, Einstein later, grudgingly, came around to say, oh, that stuff is important,
Minkowski does deserve credit. I now see it was really valuable. But it took Einstein himself quite a few years to
get there. Doesn't always happen, or there can be a much longer delay. Any other questions on Minkowski's
reaction to or remaking of Einstein's work?



So Minkowski actually thought this was really a big deal. Minkowski thought his own work was a big deal, which is
not shocking. It's also not unique in the history of science. And in particular, he thought it wasn't actually only
about coordinate transformations and rotations of axes. He thought that was the most obvious thing to do, and
anyone who doesn't do that is a dummy. He had very clear ideas about the proper tools of research.

But even in that first article that gets published soon after he passed away, he develops in the later sections a
larger worldview. Literally, a view of the world that's based on this union space-time notion. It gets very wrapped
up with certain trends in idealist German philosophy. He's very inspired by the work of Immanuel Kant, for
example. Einstein was, too, but in different ways.

And so as far as Minkowski is concerned, he thought he'd found a new deep level of reality. The reality wasn't the
ether to Minkowski. The reality was there was this single thing, space-time, and there are certain things on which
all people will agree, these invariances, even as we disagree separately on measurements of length or
measurements of time.

And so that, for him, reintroduced a kind of absolute, an absolutism. Not absolute rest like in Newton, not
absolute space, because space and time, he says, are now just mere shadows. But there is an absolute past and
an absolute future. There's an absolute away, the things that we would now call, if you've had some more
coursework in this area, you'd recognize this things like spacelike-separated and so on.

He starts mapping sets of events that could not possibly have exchanged even a single light signal yet. Those are
absolutely separated from each other. And he gives these very absolutist language to them. So he's actually
mapping what he considers like the ultimate absolute structure of space-time. And as far as he's concerned,
that's the real lesson that the geometry leads us to.

So he actually thinks it's not a theory of relativity at all. Relativity is like an accident and boring and trivial and
the stupid thing that no one should pay attention to. Relativity-- oh, we differ, the person on the train says this
wasn't the same. He says, that's just accidents. Who cares? What's actually important are these underlying
invariances or absolutes. We all agree on certain combinations of things, and that's the real lesson.

So for him, this becomes a re-injection of the absolute. Not because for all sitting in a physical ether. He couldn't
care less, he's a geometer. Because there is a unique structure to space-time that the tools of geometry are
uniquely well-adapted to help us understand. So does that makes sense? Does that address your question? OK,
cool. Thank you.

So let's see. Fisher asks the question in the chat. We now think of space-time as something is deformable. Hey,
that's cheating. That's-- we're going to get there next week. You don't know that yet. It's 1905 or 1908. But
certainly, we'll talk about quite a lot starting in this coming-- the next class session where Einstein himself gets to
is to begin thinking about space-time as one thing that also can respond, to be deformable.

Originally introduced as a mathematical artifact, was a point where we moved from thinking about it as a
mathematical concept when general relavity was published? Yes, very good. OK, so Fisher, that's a great
question. Thank you for that. And we're going to come-- we'll get to sit with that actually quite directly on our
next class, so I'm going to I'm going to punt on that for now.



The short answer is it's not-- it doesn't come only when Einstein publishes general relativity. That comes very
late, 1915. But it's an evolution in Einstein's own thinking with some colleagues, like Marcel Grossman and a
small circle, over the intervening decade.

So starting around 1911, '12, '13, he has a lot of mistakes, a lot of blind alleys. He starts wondering about that
more in the terms as you describe it. Starting well downstream both from his own work in 1905, downstream by
four years even from Minkowski's work. It's a real intellectual journey. So that's a preview, we'll get there next
time. Great.

Gary asks, how did folks react to Minkowski's work? Again, I think maybe-- sorry, maybe I mentioned that or you
asked earlier, who was the-- who made the greater contribution? Yeah, Minkowski was on people's radar screen.
He was a big fancy senior mathematician, very widely published, very influential at a central-- center of learning
in Western Europe.

So his work was paid attention to mostly by other mathematicians and by some mathematical physicists like
Hendrik Lorentz. Not every single physicist, and certainly not every experimental physicist, but it was not buried
and forgotten for years and years. It was appreciated in certain specialist communities right away, and then as
we'll talk about later, even other people like Einstein belatedly come to admire it as well.

So it becomes very, very well-known, partly, I think, because Einstein goes back to it. And Einstein himself
becomes, then-- eventually someone that everyone pays attention to, many people. So it has a bumpy few years.
But it was not launched into obscurity because Minkowski himself was actually already quite well-established and
well-known.

Abdul Aziz asks, what was Lorenz's stance with regard to this? Good. Did he jump on the space-time wagon?
Great. So the short answer is-- we'll see an example of the kind of reaction actually the next part of today's class.
Not Lorentz's, per se, but an example.

Lorentz, really, for the rest of his career was still pretty convinced that the ether exists. And he had a great
appreciation for some of these very clever mathematical techniques. He certainly liked it that Einstein's, and now
Minkowski's work, led back to equations that he himself had derived from his own set of arguments.

But he really was convinced that there's something physical about this elastic medium in which for all immersed
for a long, long time. So he thought these were more cool tools, more mathematical tools with which to keep
asking questions he already considered important. Those weren't, as we've seen, the same set of questions that
Einstein thought were important or that Minkowski thought were important. And in that sense, it's a lot like the
example we'll look at now from Cambridge.

Yeah, very good. So again, we'll look at this much more directly in the upcoming class session next week. The
short answer is, it wasn't really Minkowski, per se, because he just had no respect for Minkowski, he kept cutting
his classes.

It was actually an independent series of thought experiments and conceptual puzzles and calculations that
Einstein got immersed in, and he kept getting stuck, and that led him back to realizing geometry might be really
important, by which point, Minkowski had died, he went to his former classmate, his buddy, Marcel Grossman,
and had to do a crash course on the stuff that he kind of should have learned when he was an undergraduate.



So it was-- he came to an appreciation of the geometrical approach, of Minkowski's work in particular thinking
about a single object called space-time. He gets there. But not because he reads Minkowski's paper and says, oh,
my great professor, I'm totally convinced. He's like, that's dumb, it's wrong, it's boring, he's still irrelevant, I
would cut his classes again. That's the reaction for like four years, three or four years.

And it's a separate set of lines of thought that-- and interactions with other people, including friends who were
better-versed in mathematics, that bring him his own thinking back-- or bring his thinking towards a more
thoroughly geometric approach. And then he never leaves. Then he becomes a card-carrying geometer himself
once he gets a crash course from real geometers and gets a newfound appreciation because of his own questions
have led him there.

So he comes to greatly admire Minkowski's work, and indeed, to try to build upon it, as we'll see next time, but
not because he thought, oh, this is a cool work by a smart person. It was, again, a kind of roundabout thing. And
so-- and we'll look at that in a bit more detail in the coming class. Any other question on this stuff? If not, I'll go to
this last part of the lecture on some of the pretty wacky work that the Cambridge gang starts doing with this as
well.

Yeah, thank you, Fisher. So as far as Minkowski was concerned, Einstein's paper, especially the first few pages,
which you are all dutifully reviewing and maybe even rejecting, or not, or asking at least for revisions, the first
few pages, at least, are really, to someone like Minkowski, a jumble word salad.

This is like, of course I know how to calculate distance traveled if the person's traveling at constant speed. That's
like middle school. This is not like, why are you belaboring this paragraph after paragraph? Why are you using
this Mach-inspired language without even citing Ernst Mach about how objects should be subject to empirical
measurement?

Why are you telling me how to have my friend shine a lantern in my face? It's like, get to the point. Show me
equations, show me what you're doing, show me the measurements you performed in your laboratory, show me
the missing factor of 2 pi in Maxwell's equation. Do something. Calculate something, you lazy dog!

I think what Minkowski was reacting to was this kind of-- not just a kind of everything's in a specific coordinate
basis, it's not very unified, we would learn fancy techniques later. It's not just that he doesn't-- that Einstein
doesn't scale out the speed of light to make things more dimensionless. These are all things that we would
admire or come to take-- to consider a natural move to make because-- on the benefit of work by people like
Minkowski.

I think to Minkowski, this was just a lot of philosophical blah, blah, blah that wasn't advancing any new
mathematics. It wasn't analyzing concrete experiments in any detail. It wasn't telling us anything new about
things that other researchers had done. It was like, hey, I read some stuff and I think it's confusing, why don't
people talk about it? I think that was the kind of response from many readers, which is why many people ignored
it.

Those who bothered reading past page 5 said, oh, I've seen that equation before, that's just Lorenz's stuff. Oh,
it's the Lorentz-Einstein theory. I think it's that kind of response. And for Minkowski, I think he would have seen
an insufficient precision and clarity. And now that's a value judgment, and that depends on our own personality,
on our own training, our own toolkit.



So for Minkowski, if you're not talking about what happens when you perform rotations, there should be
something invariant. Like that should be less than 0 in geometry. The distance between my house and the town
square hasn't changed even if I rotate the street map. Like, "Who doesn't think of that?" I think would have been
Minkowski's response.

Once you think in a geometrical way, according to Minkowski, there should be unavoidable follow-up questions,
and this lazy dog is too busy talking about, he doesn't like the way textbooks describe Maxwell, like I got no time
for this. I think that would have been a pretty reasonable approximation to his first reaction.

And then he's like, oh, actually, OK, the speed of light is constant and I can perform these very clever sets of
rotations, and of course, therefore, there's an invariance, and of course, there's an absolute away. So he has his
own-- he's on his own train. He's on a different reference frame, so to speak. And certain questions are the
obvious next ones to ask because he has a certain set of tools and starting point.

And that's true of-- I think of all of us, and we'll see a contrasting example in this next part of today's class, we'll
see that over and over again throughout the term. Not only about relativity, but quantum theory, about
cosmology, about particle physics.

And here's a kind of early example where we can sink our teeth into it and say, these people weren't just
misreading it, they were doing really cool productive stuff, some of which we still take advantage of today, and
yet, what they thought they were doing is neither what we think we do, nor what the original authors thought
they were doing.

So we have this plasticity of meaning and interpretation even when our equations agree perfectly, let alone when
we come up with different equations. I find that wonderful. I love that. And in fact, they're all writing down the
same factor gamma, that's fantastic, because then we can really map what is the same and what's not the same
conceptually, let alone in the exchange of light signals.

So keep that kind of question in mind. We'll come back to that theme, really, over and over this semester, it's a
great question. Let me go on to the last part and look at our favorite Cambridge Wranglers, or at least my
favorite Cambridge Wranglers.

So, Minkowski wasn't the only person who slowly, sometimes kind of grudgingly, began to read Einstein's work on
the electrodynamics of moving bodies. Another group that really did dig in in pretty substantive ways was a
subset of these Cambridge Wranglers, the folks that now we've talked about a few times at Cambridge University.

For them, much like for Minkowski, there were elements of real value in Einstein's work, they just weren't the
elements that Minkowski considered valuable or that Einstein considered valuable. So let's take a little look at
the kinds of things that they did with Einstein's paper.

As a warm-up to make sense of this-- and by the way, for this part, of course, I'm drawing very heavily on the
article in the reading for today from Andy Warwick. And I'll talk through some of the specifics-- some of the
details of that article might be pretty confusing, so we'll talk through what were they doing at least a little bit
more.



The historical point I want to clarify is really just like Minkowski in the sense that very smart professional
researchers were making sense of Einstein's work differently than Einstein did, and that didn't make them wrong,
it made them-- it indicates that they were finding elements of value and of interest in Einstein's work different
from Einstein's own and sometimes different from our own.

That's the historical lesson. And if you get a little bit lost with image charges and conformal transformations,
that's OK. In this class especially, that's OK. But I think it's still fun to see what were they really doing, so that's
what we're going to talk about a little bit here.

So many of you, again, might have seen, even maybe in high school classes on electricity and magnetism, there
are all these really clever tricks that we still take advantage of to try to make pretty complicated problems
simpler and yet can still get exact solutions.

One of those that we learned pretty early on is called the method of image charges in electrostatics. So let's say
some meanie, one of my mean old colleagues in the Department of Physics, assigned to you the problem to solve
for the state of the electric field between a stationary point charge with a positive charge, some charge plus q,
and some infinite in extent, some infinitely long, perfectly flat conducting plate that grounded.

That's a pain in the neck to find the exact value of the electric field. It's a vector quantity to worry about how it's
changing through space. So one thing that you may remember from studying Maxwell's equations is that for this
kind of scenario, the field lines of the electric field all must intersect the plate at right angles.

That's to remain consistent with the fact that this is a grounded conducting plate. If they didn't all intersect at
right angles, you would actually build up a voltage difference, it would not satisfy the boundary conditions of the
problem. It's a pain in the neck. Meanies.

So there's a pretty clever trick. We can solve a much, much, much simpler mathematical setup to get the exact
solution for the original problem. Forget about the plate. Throw the plate away for a few steps. And instead, insert
a second point charge of equal but opposite sign. Equal-equal magnitude, but opposite sign.

So now in this new scenario, we pretend there's nothing physical here, but we have an equal distance away from
that where the plate had been in the original problem. We put down an imaginary image charge that has a
negative charge, but at the same magnitude as the original positive charge.

Now we can easily solve for-- much more easily solve for the value of the electrostatic potential. It's just two
bodies. It just goes like a 1 over r between them. We can take the gradient, see how that changes through space.
We can do everything we would ask to do to solve for the exact behavior of the electric field by replacing one
problem with a simpler but equivalent one.

That's the method of image charges. You can learn about that on Wikipedia or on any textbook. It's a standard
technique that goes back really centuries. It's pretty powerful.

Well, that's baby stuff. We're talking about Cambridge Wranglers here, or for that matter, MIT students. We don't
have to do one single point charge behind what would have been an infinite unbending conducting plate. That is
boring. Let's do some crazy stuff. And that's what the Wranglers got very good at doing with their personal tutors
for the Tripos exam.



So a very similar related technique became known as the method of inversion. And that's, again, really just
mapping a difficult problem into a simpler one. And again, this illustration is taken from Andy Warwick's article,
which then is elaborated upon in this book of his that I really can't recommend strongly enough. I love this book,
Masters of Theory. But the article itself really gets this part across.

Let's first do a little geometry, a little mapping exercise, which is what the Wranglers would have learned to do
very early with their coaches. Take any single point A. Here's the point a for our case. Any point that happens to
be inside a circle of radius k. So the point A is contained within that circle.

We can then do a unique mapping to an inverse point, kind of like that-- where we place our image charge from
the past example. There is a one-to-one map for a point corresponding uniquely to that point A that's now
outside the circle.

And so the way we determine where that point will be is by requiring the distance from the center of the circle to
our original point, that distance OA, times the distance between the center of the circle and the new point, the
inverse point. The product of those distances must equal the square of this radius. That's enough to do this
mapping. It's actually called a conformal mapping.

Now what if there were some point that point A is actually moving along this curve, this orange curve between
points P and Q? We can imagine, there is a whole set of points, each of which lies entirely within this original
circle. For each of these points along the orange curve between p and q, we can do the same trick. We can map
them to each of their corresponding inverse points.

For every single point along this orange curve, we require this relationship to hold. And we map them to an
inverse arc, a collection of inverse points that are entirely outside the circle. So if we imagine swooping from
point p to q within that circle, the mapped motion, the uniquely corresponding motion would swoop from point p
prime to q prime.

Now this transformation is called a conformal transformation. We use this all the time-- I use these all the time,
even to this day in my own physics research. They're really, really helpful in topics like general relativity and
cosmology. The Wranglers are doing this for electrostatics to get ready for their exam.

So this transformation preserves angles, the angles between any of these arcs, any of these line segments, this
angle marked w here. Those angles are preserved, the lengths are not. You can see, the line segment pq is
clearly a shorter overall length-- the distance between points p and q is shorter than the distance between the
corresponding inverse points p prime and q prime.

So very generally, conformal transformations preserve angles, but not lengths. If that sounds confusing to you,
you're in good company. The point is, that's the kind of stuff these Wranglers would have learned with their
coaches pretty early. There are properties of these geometrical transformations, the upshot of which is to make
complicated problems easier.

So now let's get to an actual Tripos-type problem. Now let's say, because you're at Cambridge in 1880 or 1890,
they don't ask you to solve for the field between a static positive charge and an infinite conducting plate. Come
on. We are Wranglers. Instead, we want to solve for the electric field lines, or let's say the equipotential surfaces
where the electrostatic potential is equal-- so equipotential surface.



Due to a single charge at location O that's near a grounded conducting sphere centered at B. So here is the
actual physical parts of our problem. Some charge here sitting at rest, electrostatics, some electric charge at
point O that's near some spherical grounded conducting sphere-- there's a harder version than our infinite plane.

Well, let's use this method of inversion to treat what turns out to be a much simpler problem. So we have to map
the simpler version first. Instead of considering either point O or this conducting sphere B, we introduce the
equivalent of a kind of image charge.

We consider a charged conducting sphere centered at point A. We put in this-- like our image charge-- our new
geometrical simplified system some positive charge and a sphere at A. Then we draw the field lines and the
equipotential surfaces for that. Now that's very easy. It's just a sphere. They're just going to be concentric circles
around it for the equipotential surfaces. The field is just radial. It goes back to Faraday's lines of force. It couldn't
be easier for these Wranglers.

Now we use that method of inversion to map it back to the original problem. We're going to close this imaginary
object A in a sphere of radius K. And they will map every point along this orange curve to the corresponding
image points outside of our circle. And now we've mapped the equipotential surfaces for the original problem
based on this much simplified problem.

If that's confusing to you, first of all, good. You've led a healthy life. This is not on the exam. This is just meant to
be an example to make sure that the kind of reasoning that these Wranglers would have been immersed in of the
sort we've seen a few times. This is like standard Tripos stuff.

And remember, unlike us here at MIT, the undergraduates at Cambridge in the 1880s would have done all this on
a timed exam that determined their graduation rank and would be published in the national newspaper, so we
won't to ask that of you.

So now let's come back to what Andy is writing about in this article. This method of inversion and these
geometrical techniques, like conformal transformations, that was like daily stuff for these Cambridge Wranglers
by 1900. These techniques apply to electrostatics.

Imagine, you have a fixed charge sitting still at point O, a fixed grounded sphere, nothing changes over time.
And that is to say a little more quantitatively, you're always solving for situations in which the electric potential is
not varying. It's a problem in electrostatics not varying over time even though it varies over space.

So what these young recent Wranglers wanted to do, Ebenezer Cunningham and Harry Bateman, was to actually
use Einstein's work to tackle a problem they cared about, which is to generalize these inversion problems and
conformal transformations to situations where objects might be moving around to electrodynamics of moving
bodies, not to electrostatics. You can see why Einstein-- the title of Einstein's paper would have caught their
attention.

They wanted to understand how to generalize these Wrangler-like techniques to the question of the
electrodynamics of moving bodies. And they thought Einstein's paper had some pretty clever tools in there to do
that.



So they could identify, using Einstein's work, all the transformations, which we would now call the Lorentz
transformations, lambda-- Einstein had separately rederived those in a later part of the paper that I didn't assign
for our class, but it's in Einstein's paper, too. These are the transformations that would leave the original wave
equation invariant.

So then they could use these inversion, these mapping techniques, the characteristic Wrangler techniques to
map into new dynamical solutions that could vary in time and not just space, keeping in mind that now the time
coordinate, as well as the spatial coordinates, might need to be shifted thanks to this Lorentz transformation.

So they wanted to use Einstein's paper to find the most general class of transformations lambda that would leave
this harder problem invariant. To do for electrodynamics what they had already learned with their coaches to do
for electrostatics. That's what relativity was all about for these folks. They were reading Einstein's work very
carefully. They were doing extremely productive, hard, original work. They just were doing things that Einstein
didn't notice or care or think was important or that Minkowski did.

So they weren't trying to understand the ether, per se. Again, they weren't trying to understand Machian
positivism. They weren't even really that concerned about Minkowski space-time. For them, it's about wrangling
most of the manipulations of mapping complicated problems into simpler ones, and Einstein's paper then gave
them additional tools with which to do their problem.

So they weren't ignoring Einstein's work, but they also weren't card-carrying Einsteineans. So that's what I
wanted to go through just to make sure that the real historical point of Andy's paper would be clear. It gets pretty
complicated, the details of these inversions and all that. I'd be glad to chat more about that. But the main point--
the main lesson for us is really that they're also doing real work with Einstein's paper, just different work than
Einstein. So let me wrap up for today.

Researchers didn't just read Einstein's paper and become convinced, they didn't become like converted
Einsteineans for a long, long time. Most people ignored the paper altogether. Those few who paid attention often
thought it was just a minor elaboration of previous work.

The few who really did pay attention to it much more squarely did so from within their own context. We can even
jokingly say, within their own frames of reference, much like Einstein's favorite example of observers on the
platform or on the train. They do different stuff with it. Different parts of the paper are relevant to them and of
value.

They're not misunderstanding Einstein's work, they're like utterly understanding it. They're doing real stuff with
it, just not what Einstein had first intended.

So we saw Minkowski reinterpreted it in terms of a certain kind of geometrical vision. The Cambridge gang,
Cunningham Bateman and some of their immediate circles, they do other kinds of geometrical things with it
because they have other concerns more related to the properties and-- transformation properties of differential
equations.



The point is, none of these readers seem to care much about what was most important to Einstein. As far as
Einstein was concerned, none of them were getting the point of his article even though these were among the
people who paid any attention at all. Einstein had argued in those opening paragraphs that the ether was merely
superfluous. Who cared? They didn't-- that wasn't the part that landed with them.

Moreover, Einstein had insisted that we start with kinematics instead of dynamics. Forget-- that didn't wash, that
didn't register. Instead, as we've seen before, and we'll see again, even the exact same equations could inspire
quite different interpretations or different meanings.

So I'll stop there. Any other questions on that last part about the Cambridge gang? And again, if the particulars of
conformal transformations or inversion went by too quickly or Andy's paper was confusing, please don't worry, I'd
be glad to chat more if it's of interest for you, but the historical point is just to say they were doing real work.

It's still in our textbooks. It was valuable work. It was just different work than Einstein's or Minkowski's or
Lorentz's and so on. That's really the point I think we can hold on to in this class.

Any other questions on that? Anyone want to volunteer to do more inversion problems for conducting spheres
and-- I hate that stuff. That stuff, yeah. Julia says no. I'm with Julia on this. That stuff makes me-- that really
makes my head hurt.

And you want to do that for five hours before lunch like a good Wrangler? That's another question for you. Your
math homework before lunchtime. OK. If there's no more questions for now, then I'll pause there. We'll pick it up
early next week.

And we'll-- and we'll get into many of the questions that were raised even for today. What is Einstein himself do
with all this work in his march toward what we would eventually call the General Theory of Relativity? So we'll
come to that. That will occupy us, then, for our next class.


