
8.225 / STS.042, Physics in the 20th Century

Professor David Kaiser, 14 October 2020

1. Superposition and Schrödinger's Cat

2. EPR and "Elements of Reality"

3. Bell's Inequality and Entanglement*

[^0]
Schrödinger's Equation Recap

In 1926, Erwin Schrödinger developed an approach to a first-principles quantum mechanics, which appeared (at first) to be distinct from Heisenberg's matrix mechanics. Building on Louis de Broglie's suggestion about matter waves, Schrödinger introduced a wave equation for a new quantity, the quantum wave function ψ.

$$
E \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V(r) \psi
$$

Solutions obeyed superposition: if $\psi_{1}(t, \mathbf{x})$ and $\psi_{2}(t, \mathbf{x})$ were each solutions, then so was $\psi_{3}(t, \mathbf{x})=\psi_{1}(t, \mathbf{x})+\psi_{2}(t, \mathbf{x})$. That yields interference.

In summer 1926, Max
Born suggested that $\psi(t, \mathbf{x})$ is a "probability amplitude."
Probability $=|\psi|^{2}$.

Superposition and Quantum States

$|\uparrow\rangle=\operatorname{spin} u p$ along $\hat{\mathbf{z}}$,
with $\hat{s}_{z}|\uparrow\rangle=+\frac{\hbar}{2}|\uparrow\rangle$

$$
|\psi\rangle=a_{\mathrm{up}}|\uparrow\rangle+a_{\text {down }}|\downarrow\rangle
$$

$|\downarrow\rangle=\operatorname{spin}$ down along $\hat{\mathbf{z}}, \quad$ with $\hat{s}_{z}|\downarrow\rangle=-\frac{\hbar}{2}|\downarrow\rangle$
The two spin states are orthogonal; their corresponding state vectors have vanishing overlap: $\quad\langle\uparrow \mid \downarrow\rangle=0$
Image © source unknown. All rights
British physicist Paul Dirac further formalized Schrödinger's approach. In general, a quantum state could be represented as a vector $|\psi\rangle$ in an (abstract) vector space. That state vector could itself be represented as a weighted sum of "eigenstates": states with a definite value for a specific property:

$$
|\psi\rangle=\sum_{n} a_{n}\left|\phi_{n}\right\rangle
$$

(This is just a more formal or abstract way of representing superposition: if each of the states $\left|\phi_{n}\right\rangle$ is a solution, then so is their sum.)
reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fairuse/

Even though the individual eigenstates are incompatible with each other, we may construct a valid quantum state via superposition.

Superposition and Quantum States

$|\uparrow\rangle=\operatorname{spin}$ up along $\hat{\mathbf{z}}, \quad$ with $\hat{s}_{z}|\uparrow\rangle=+\frac{\hbar}{2}|\uparrow\rangle$
$|\downarrow\rangle=$ spin down along $\hat{\mathbf{z}}, \quad$ with $\hat{s}_{z}|\downarrow\rangle=-\frac{\hbar}{2}|\downarrow\rangle$
The two spin states are orthogonal; their corresponding state vectors have vanishing overlap: $\quad\langle\uparrow \mid \downarrow\rangle=0$
Image © source unknown. All rights
reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fairuse/

$$
|\psi\rangle=a_{\mathrm{up}}|\uparrow\rangle+a_{\text {down }}|\downarrow\rangle
$$

If we perform a measurement of spin along \mathbf{z} for a particle prepared in this state:

$$
\begin{aligned}
\operatorname{Prob}(\mathrm{up}) & =|\langle\uparrow \mid \psi\rangle|^{2}=\left|a_{\mathrm{up}}\right|^{2} \\
\operatorname{Prob}(\text { down }) & =|\langle\downarrow \mid \psi\rangle|^{2}=\left|a_{\text {down }}\right|^{2}
\end{aligned}
$$

Each time the spin is measured along \mathbf{z}, we always find a definite result: either spin up or spin down. We never find a "smeared out" or fuzzy result.

And yet, according to Born, Dirac, Bobr and the others, quantum mechanics can only be used to calculate probabilities; the equations offer no way to know in advance whether the particle was really spin up or spin down, prior to the measurement.

Superposition and Quantum States

Bohr went further: what if the particle had no definite value (e.g., of

$$
\operatorname{Prob}(u p)=\mid\langle\uparrow \mid \omega\rangle^{2}
$$ spin along \mathbf{z}) prior to its measurement? As if a person had no

If we perform a measurement of spin along \mathbf{z} for a particle prepared in this state:

$$
|\psi\rangle=a_{\mathrm{up}}|\uparrow\rangle+a_{\mathrm{down}}|\downarrow\rangle
$$

a definite result:
oxford
at the clarendon pres
$|\uparrow\rangle=\operatorname{spin} u p$ along $\hat{\mathbf{z}}, \quad$ with $\hat{s}_{z}|\uparrow\rangle=+\frac{\hbar}{2}|\uparrow\rangle$
$|\downarrow\rangle=$ spin down along $\hat{\mathbf{z}}, \quad$ with $\hat{s}_{z}|\downarrow\rangle=-\frac{\hbar}{2}|\downarrow\rangle$
The two spin states are orthogonal; their corresponding state vectors have vanishing overlap: $\quad\langle\uparrow \mid \downarrow\rangle=0$
Image © source unknown. All rights
reserved. This content is excluded
from our Creative Commons
license. For more information, see
https://ocw.mit.edu/help/faq-fair-
use/

Schrödinger's Cat

Einstein grew frustrated with this restriction to only calculating probabilities. He wrote to his good friend Max Born in December 1926:
> "Quantum mechanics is certainly imposing. But an inner voice tells me it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the 'old one.' I, at any rate, am convinced that $H e$ is not playing at dice."

Einstein and Schrödinger began discussing these points together as well, once Schrödinger moved to Berlin in 1927. (He succeeded Max Planck.) They enjoyed Wiener Wirrstelabende evenings together (Viennese sausage parties), and sailing on the lake near Einstein's summer home.

In one letter, Einstein asked Schrödinger to imagine that a ball had been placed in one of two identical, closed boxes. Prior to opening either box, the probability of finding the ball in Box 1 was 50%. "Is this a complete description? NO: A complete statement is: the ball is (or is not) in the first box."

Schrödinger's Cat

Nazi book-burning rally in Berlin, spring 1933 Image is in the public domain.

Both Einstein and Schrödinger left Germany once the Nazis took power in 1933. They continued their discussions by letter; their examples began to reflect the darker times.

Einstein to Schrödinger, 8 August 1935: Imagine a charge of gunpowder that was intrinsically unstable, with 50-50 odds of exploding over the course of one year. "In principle this can quite easily be represented quantum-mechanically":

$$
|\psi\rangle_{\text {gunpowder }}=\frac{1}{\sqrt{2}}\left[|\psi\rangle_{\text {unexploded }}+|\psi\rangle_{\text {exploded }}\right]
$$

"After the course of a year this is no longer the case at all. Rather, the ψ-function then describes a sort of blend of not-yet and of already-exploded systems. [... But] in reality there is just no intermediary between exploded and not-exploded."

Schrödinger's Cat

Schrödinger replied to Einstein on 19 August 1935, with a twist:

\section*{DIE NATURWISSENSCHAFTEN
 | 23. Jahrgang | 29. November 1935 | Heft 48 | | |
| :--- | :--- | :--- | :--- | :--- |
| | Die gegenwärtige | | | |
 Die gegenwärtige Situation in der Ouant Heft 48}

"Confined in a steel chamber is a Geiger counter prepared with a tiny amount of [radioactive] uranium, so small that in the next hour it is just as probable to expect one atomic decay as none. An amplified relay provides that the first atomic decay shatters a small bottle of prussic acid [cyanide poison]. This and - cruelly - a cat is also trapped in the steel chamber."
> "After one hour, the living and dead cat are smeared out in equal measure."

© Dhatfield on Wikimedia Commons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left\{\left|\psi_{\text {living }}\right\rangle+\left|\psi_{\text {dead }}\right\rangle\right\}
$$

Schrödinger's Cat

Schrödinger replied to Einstein on 19 August 1935, with a twist:

\section*{DIE NATURWISSENSCHAFTEN
 23. Jalrgang
 | 29. November ${ }^{2935}$ | | | | | | | Heft 48 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Die gegenwärtige Situation | | | | | | | |}

"Confined in a steel chamber is a Geiger counter prepared with a tiny amount of [radioactive] uranium, so small that in the next hour it is just as probable to expect one atomic decay as none. An amplified relay provides that the first atomic decay shatters a small bottle of prussic acid [cyanide poison]. This and - cruelly - a cat is also trapped in the steel chamber."
> "After one hour, the living and dead cat are smeared out in equal measure."

Einstein's reply (4 September 1935): "Your cat shows that we are in complete agreement. A ψ-function that contains the living as well as the dead cat just cannot be taken as a description of the real state of affairs."
An irony: By early mid-1930s, Schrödinger had become skeptical of some of his own contributions to quantum mechanics, and - along with Einstein - became an outspoken critic. He invented his cat paradox as a critique of the central role of superposition and probabilities in quantum theory.

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left\{\left|\psi_{\text {living }}\right\rangle+\left|\psi_{\text {dead }}\right\rangle\right\}
$$

Questions?

EPR and "Elements of Reality"

That same year (1935), Einstein and two younger colleagues at the Institute for Advanced Study in Princeton (Boris Podolsky and Nathan Rosen) published an even more elaborate critique of quantum theory. detector 1

According to quantum mechanics, prior to either measurement the system would

EINSTEIN ATTACKS QUANTUM THEORY

Scientist and Two Colleagues Find it is Not 'Complete' Even Though 'Correct.'
see fuller one possible be described by a superposition of two different two-particle states:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left\{|u\rangle_{A}|v\rangle_{B}+|v\rangle_{A}|u\rangle_{B}\right\}
$$

The quantum state does not factorize: according to quantum mechanics, there is no way to describe the behavior of particle \boldsymbol{A} without referring to the behavior of particle \boldsymbol{B}.

EPR and "Elements of Reality"

Suppose physicist 1 measures the position of particle \boldsymbol{A}. Then, from the conservation of momentum, she immediately knows the position of particle B. Or physicist 1 could choose to measure the momentum of particle \boldsymbol{A}.
detector 1

If she waited until the last possible moment to decide which measurement to perform, there would not be enough time for a signal to update particle \boldsymbol{B} as to what values it should have for various properties. So particle \boldsymbol{B} must have carried its own set of definite properties on its own, prior to measurement.

Quantum mechanics does not describe particle \boldsymbol{B} s properties on its own.
Therefore quantum mechanics must be incomplete.

EPR and "Elements of Reality"

The EPR conclusion relied upon two assumptions:
detector 1

"Reality criterion" (p. 777): "If, without in any way disturbing a system, we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists an element of reality corresponding to this physical quantity."

This is an assumption that quantum objects possess complete sets of properties on their own, prior to our efforts to measure them.
"Locality" (p. 779): "Since at the time of measurement the two systems [particles \boldsymbol{A} and $\boldsymbol{B}]$ no longer interact, no real change can take place in the second system in consequence of anything that may be done to the first system."

This is an assumption that no influence can travel arbitrarily quickly: local causes yield local effects.

EPR and "Elements of Reality"

The EPR conclusion relied upon two assumptions: detector 1

Einstein to Max Born, 3 March 1947: [quantum mechanics] because the thery reality in time and space, free the idea that physics should represent a reality in time and space, free

INSTEIN ATTAGKS QUANTUM THEORY
jientist and Two Colleagues Find it is Not 'Complete' Even Though 'Correct.'

SEE FULLER ONE POSSIBLE
Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.
"Locality" (p. 779): "Since at the time of measurement the two systems [particles \boldsymbol{A} and $\boldsymbol{B}]$ no longer interact, no real change can take place in the second system in consequence of anything that may be done to the first system."

This is an assumption that no influence can travel arbitrarily quickly: local causes yield local effects.

Questions?

Bell's Inequality and Entanglement

Bell suggested: these are assumptions, and we can try to test them.

In 1964, Irish physicist Jobn S. Bell scrutinized the EPR paper, returning to the two main assumptions that those authors had made:

- Each particle has definite properties, on its own, before it is measured. (Reality criterion)
- No influence can travel across space arbitrarily quickly. (Locality)

> detector settings: a, b measurement outcomes: A, B
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/ help/faq-fair-use/

Correlations at a Distance

Dichotomic observables $\quad A(a), B(b)= \pm 1$
Correlation functions $\quad E(a, b)=\langle A(a) B(b)\rangle$

$$
S=E(a, b)+E\left(a^{\prime}, b\right)-E\left(a, b^{\prime}\right)+E\left(a^{\prime}, b^{\prime}\right)
$$

Bell: if $p(A, B \mid a, b)=\int d \lambda p(\lambda) \underbrace{p(A \mid a, \lambda)} p(B \mid b, \lambda)$

Quantum mechanics predicts that quantum systems can be more strongly correlated than Bell's inequality would allow.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/ help/faq-fair-use/

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

"What would you like for dessert?"

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Cosmic Bell Experiments

Courtesy of Calvin Leung. Used with permission.

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Image © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Cosmic Bell Test Using Random Measurement Settings from High-Redshift Quasars
Dominik Rauch, ${ }^{1,2 *^{*}}$ Johannes Handsteiner, ${ }^{1,2}$ Armin Hochrainer, ${ }^{1,2}$ Jason Gallicchio, ${ }^{3}$ Andrew S. Friedman, ${ }^{4}$ Calvin Leung, ${ }^{1,2,3,5}$ Bo Liu, ${ }^{6}$ Lukas Bulla, ${ }^{1,2}$ Sebastian Ecker, ${ }^{1,2}$ Fabian Steinlechner, ${ }^{1,2}$ Rupert Ursin, ${ }^{1,2}$ Beili Hu, David Leon, Chris Benn, Adriano Ghedina, Massimo Cecconi, ${ }^{8}$ Alan H. Guth, David I. Kaiser, ${ }^{5, \dagger}$ Thomas Scheidl, ${ }^{1,2}$ and Anton Zeilinger ${ }^{1,2,}$
arXiv:1808.05966

Image © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Image © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

The measured correlations exceed Bell's inequality by more than 9 standard deviations, with detector settings determined by events that occurred on opposite sides of the universe, 8 and 12 billion years ago!

The world appears to be just as "spooky" as quantum mechanics describes!

Quantum Weirdness Summary

Even though the individual eigenstates are incompatible with each other, we may construct a valid quantum state via superposition:

Are probabilities calculated from superpositions really enough
to describe our world?
(c) Dhatfield on Wikimedia Commons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

detector 1
 detector 2

MITOpenCourseWare
https://ocw.mit.edu

STS.042J / 8.225J Einstein, Oppenheimer, Feynman: Physics in the 20th Century Fall 2020

Forinformation aboutciting these materials orourTerms ofUse,visit: https://ocw.mit.edu/terms.

[^0]: * See optional Lecture Notes on Bell's inequality

