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Introduction 

These notes discuss the famous inequality derived by physicist John S. Bell in 1964, regarding 

correlations of the outcomes of measurements conducted on two or more particles. The first 

section introduces Bell’s inequality and the concept of “local realism.” The next section 

illustrates how systems that are prepared in a quantum-entangled state are predicted to 

violate Bell’s inequality, revealing stronger correlations than local realism would allow. The 

appendix provides a derivation of Bell’s inequality. 

Reading these notes is optional; the notes are meant to fill in some of the gaps in various 

derivations that we will not cover during our class session. 

Bell’s Inequality and “Local Realism” 

In 1964, theoretical physicist John S. Bell published a short article in the first volume of an 

out-of-the-way physics journal, Physics Physique Fizika. The journal folded just a few years 

later, but Bell’s article went on to become one of the most influential physics papers of the 

twentieth century.1 In his article, Bell scrutinized the famous critque of quantum mechanics 

by Albert Einstein, Boris Podolsky, and Nathan Rosen from 1935, which is usually referred 

1John S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics Physique Fizika 1 (1964): 195-200. 
Many of Bell’s related articles and essays on the topic are available in Bell, Speakable and Unspeakable in 
Quantum Mechanics (New York: Cambridge University Press, 1990). On the history of Bell’s inequality, see 
esp. Olival Freire, Jr., “Philosophy enters the optics laboratory: Bell’s theorem and its first experimental tests 
(1965–1982),” Studies in History and Philosophy of Modern Physics 37 (2006): 577-616; Louisa Gilder, The 
Age of Entanglement: When Quantum Physics was Reborn (New York: Knopf, 2008); and David Kaiser, How 
the Hippies Saved Physics: Science, Counterculture, and the Quantum Revival (New York: W. W. Norton, 
2011). Recent, accessible discussions include the graphic novel by Tanya Bub and Jeffrey Bub, Totally 
Random: Why Nobody Understands Quantum Mechanics (Princeton: Princeton University Press, 2018), 
and George Greenstein, Quantum Strangeness: Wrestling with Bell’s Theorem and the Ultimate Nature of 
Reality (Cambridge: MIT Press, 2019). 
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Figure 1: Schematic illustration of the original EPR thought experiment. A source σ emits a pair 
of particles that travel in opposite directions. At each detector, a physicist selects a measurement 
to be performed by adjusting the detector settings (a, b); each detector then yields a measurement 
outcome (A, B). 

to by the authors’ initials: EPR.2 

In their article, the EPR authors described a thought experiment like the one shown in 

Fig. 1. A source σ emits pairs of particles that travel in opposite directions. The particle 

traveling to the left encounters a device at which a physicist could select some property of the 

particle to measure, by adjusting the detector setting a. Once the type of measurement to 

perform has been selected and the particle has arrived at the detector, the detector completes 

a measurement of the selected property and yields a measurement outcome A. The particle 

traveling to the right encounters an identical device, at which a second physicist could select 

various types of measurements to perform by adjusting the detector setting b. Her device 

then yields the measurement outcome B. 

In the context of this thought experiment, the EPR authors articulated two criteria that 

they argued any reasonable physical theory should meet: 

• “Reality criterion”:“If, without in any way disturbing a system, we can predict with 

certainty (i.e., with probability equal to unity) the value of a physical quantity, then 

there exists an element of reality corresponding to this physical quantity.” 

• “Locality”: “Since at the time of measurement the two systems [that is, the pair of 

particles emitted from source σ] no longer interact, no real change can take place in 

the second system in consequence of anything that may be done to the first system.”3 

The combination of these criteria is often referred to as “local realism”: that physical systems, 

including elementary particles, possess definite values for various properties on their own, 

prior to and independent of our choice of what to measure, and that no influence can travel 

across space arbitrarily quickly. 

2Albert Einstein, Boris Podolsky, and Nathan Rosen, “Can quantum mechanical description of reality be 
considered complete?,” Physical Review 47 (1935): 777-780. 

3Einstein, Podolsky, and Rosen, “Can quantum mechanical description,” on pp. 777, 779. 
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The EPR authors argued that since quantum mechanics is incompatible with local re-

alism, quantum mechanics could not be a complete or final theory of nature. In his 1964 

analysis, Bell agreed that quantum mechanics is incompatible with local realism; but he also 

emphasized that local realism itself was an assumption, not (as yet) a demonstrated fact. 

No matter how reasonable local realism may appear — judged either by common experi-

ence or by its easy fit with other well-established physical theories, including Einstein’s own 

relativity — the question remained whether nature behaved in accordance with local realism. 

Bell proposed a new type of experiment that could test whether the behavior of physical 

systems at the atomic scale was consistent with local realism. His first step was to suggest 

that the two detectors in Fig. 1 perform measurements whose outcomes could only ever take 

one of two values (so-called “dichotomic observables”), such as the spin of an electron or the 

polarization of a photon. For example, if one were measuring an electron’s spin along ẑ, the 

only possible measurement outcomes would be spin up or spin down along ẑ. If one measured 

the electron’s spin in units of ~/2, then these two outcomes would correspond to +1 (spin 

up) and −1 (spin down). Similarly for photon polarization: once one oriented the polarizing 

filter along some direction, a photon could only ever be measured with polarization parallel 

(+1) or perpendicular (−1) to the chosen orientation. For measurements of dichotomic 

observables, the measurement outcomes can always be represented as simply A = ±1 and 

B = ±1. 
Next, Bell continued, the physicists at each detector could adjust the detector settings 

at their device to select among various measurements to perform. The physicist at the left 

detector could choose to measure an electron’s spin along ẑ or along some direction inclined 

by an angle θ from ẑ, and similarly for the physicist at the right detector. In other words, 

the physicist on the left could choose to perform a measurement either with detector setting 

a or a0; and the physicist on the right could choose among detector settings b or b0 . 

Because the outcomes of measurements at each detector could only ever be A = ±1 and 

B = ±1 — no matter what the selection of detector settings (a, b) had been on a given 

experimental run — Bell suggested that physicists consider the correlation function: 

E(a, b) = hA(a) B(b)i , (1) 

where the angular brackets denote averaging over many experimental runs in which the 

particles were subjected to measurements with the pair of detector settings (a, b). Given 

A(a) = ±1 and B(b) = ±1, the product A(a) B(b) can only ever be ±1 on any given 

experimental run. Upon averaging over many runs in which the detector settings were (a, b), 

the correlation function would therefore satisfy −1 ≤ E(a, b) ≤ 1. One may then consider a 

3 



combination of these correlation functions, as one varies the detector settings at each side: 

S ≡ E(a, b) + E(a 0, b) − E(a, b0) + E(a 0, b0) . (2) 

This form of the parameter S is often called the Bell-CHSH parameter: it was derived by 

physicists John Clauser, Michael Horne, Abner Shimony, and Richard Holt soon after Bell’s 

original derivation.4 

The correlation functions E(a, b) (and hence the Bell-CHSH parameter S) can be mea-

sured experimentally by conducting measurements on many pairs of particles, recording the 

measurement outcomes A and B for a given pair of detector settings (a, b), and repeating 

the exercise for the other combinations of detector settings, such as (a, b0), (a0, b), and so on. 

One can also make predictions for the values of E(a, b) (and hence S) using various physi-

cal theories, and compare those predictions with experimental observations. In general, the 

theoretical prediction for the value of the correlation function E(a, b) can be written as X 
E(a, b) = AB p(A, B|a, b) , (3) 

A,B=±1 

where p(A, B|a, b) is an expression for the probability that the measurement outcomes on a 

given experimental run will be (A, B) when the detector settings are selected to be (a, b). 

For example, one may use a particular theoretical model to calculate p(+1, +1|a, b0), which 

is the probability to find A = +1 and B = +1 when the detector settings are set to a and b0 . 

The question then comes down to how various physical theories make predictions for the 

correlation functions E(a, b). Bell and the CHSH authors demonstrated that any physical 

theory that satisfies local realism would make predictions for E(a, b), and hence for S, in 

which S was subject to an inequality: 

|S| ≤ 2 . (4) 

I review Bell’s derivation of this inequality in the Appendix. The main take-away message 

is that quantum mechanics is not compatible with local realism, and it predicts that mea-

surements on certain systems could be more strongly correlated than local-realist theories 

would allow. That is, quantum mechanics predicts that physicists should measure violations 

of Bell’s inequality, finding |S| > 2 under certain conditions, whereas any local-realist theory 

should obey Eq. (4). 

4John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt, “Proposed experiment to 
test local hidden variable theories,” Physical Review Letters 23 (1969): 880-884. Their derivation followed 
closely along Bell’s original argument in Bell, “On the Einstein-Podolsky-Rosen paradox.” 
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Quantum Entanglement and Bell’s Inequality 

Quantum-Mechanical Description of Polarized Photons 

For definiteness, let us consider the case in which the source σ emits pairs of photons, and 

the physicists at each detector choose to measure their photon’s linear polarization. Once 

a physicist fixes the orientation of the polarizing filter at her detector station (along some 

direction in space described by a unit vector n̂), she can register either horizontally polarized 

photons (in state |Hi) or vertically polarized photons (in state |V i). A horizontally polarized 

photon registers as measurement outcome +1 (analogous to spin up for an electron), and 

a vertically polarized photon registers as −1 (akin to spin down). These states have no 

overlap; they are orthogonal to each other: 

hV |Hi = 0 , hH|V i = 0 , (5) 

where hψ| is the “Hermitian conjugate” of the state |ψi. 5 The states are also normalized 

such that 

hH|Hi = 1 , hV |V i = 1 . (6) 

If a physicist were to rotate the polarizing filter at her detector so that it pointed along 

a new direction n̂0 that made an angle θ ≡ n̂ · n̂0 with respect to the original orientation, 

then a different set of states |H̃ i and |Ṽ i would register as either horizontally or vertically 

polarized at her detector. These states share some overlap with the original states |Hi and 

|V i. In fact, the new states are simply rotations by the angle θ from the original states: � � � � 
|H̃ i |Hi 

= R(θ)|Ṽ i |V i � �� � (7) 
cos θ sin θ |Hi 

= ,− sin θ cos θ |V i 
5If we represent the state |ψi as a column vector in its abstract vector space, then hψ| is a row vector in 

that space, given by the conjugate transpose. For example: � � 
x ∗ |ψi = −→ hψ| = (x , y ∗ ) , 
y 

where the components x and y are numbers (which could be complex). The inner product between two 
states |ψ1i and |ψ2i can then be evaluated: � � � � � � 

m s m∗ ∗ ∗ inner product of |ψ1i = with |ψ2i = is given by hψ2|ψ1i = (s , t ∗ ) = ms + nt . 
n t n 

If |ψ1i = |Hi and |ψ2i = |V i, representing photon states with horizontal and vertical polarization (in a 
particular basis), respectively, then m = 1, n = 0, s = 0, and t = 1, and we see that hV |Hi = hH|V i = 0. 
More loosely, we can think of the inner product hψ2|ψ1i as the analogy of a dot product among ordinary 
vectors, keeping in mind that the components of the quantum states |ψii can, in general, be complex numbers. 
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or 

|H̃ i = |Hi cos θ + |V i sin θ , 
(8) 

|Ṽ i = − |Hi sin θ + |V i cos θ . 

In Eq. (7), R(θ) is the usual rotation matrix in two spatial dimensions.6 When measured 

along the orientation n̂0 , these states yield measurement outcomes +1 (for state |H̃ i) and −1 

(for state |Ṽ i). Using Eqs. (5) and (6), it is easy to confirm that the pair of polarization states 

in the rotated basis are orthogonal to each other and also properly normalized: hṼ |H̃ i = 

hH̃ |Ṽ i = 0, and hH̃ |H̃ i = hṼ |Ṽ i = 1. 

Maximally Entangled States 

We can arrange for the source σ to emit pairs of photons in a maximally entangled state, 

such as � � 
1 |Ψi = √ |HiA |V i − |V iA |Hi . (9)B B
2 

The subscript “A” refers to the state of the particle traveling toward the left detector, 

and “B” refers to the particle traveling toward the right detector. Eq. (9) represents an 

“entangled” state because it cannot be factorized: there is no way to describe the behavior 

of particle A without also referring to some aspect of the behavior of particle B, and vice 

versa. The state |Ψi is “maximally” entangled because the states within the superposition √ 
are weighted with coefficients of equal magnitude (in this case, 1/ 2). 

When a pair of photons is prepared in the state |Ψi and each photon is measured by a 

polarizer oriented in the direction n̂, the measurement outcomes should always be opposite 

to each other: A = +1 at the left detector together with B = −1 at the right detector, or 

A = −1 with B = +1. These two outcomes for the pair of measurements (A, B) should 

occur with equal probability, since the coefficients in front of each term on the right side of 

Eq. (9) are of equal magnitude. 

We can unpack those statements a bit more explicitly, which should make it easier to 

understand how things change once the physicists rotate their polarizers to directions other 

than n̂. When both polarizers remain aligned along n̂ (that is, a and b are each rotated by 0◦ 

from the direction n̂), we may calculate p(A, B|a, b) → p(A, B|0◦ , 0◦) for various outcomes 

A = ±1 and B = ±1. In general in quantum theory, the probability for a given outcome is 

given by the absolute square of the corresponding amplitude, A. The amplitude, in turn, is 

calculated from the overlap (or inner product) between the incoming quantum state |Ψi and 

6We are assuming that the polarizing filters are oriented at some direction within the two-dimensional 
plane that is perpendicular to the photons’ direction of travel; hence we may use this form for R(θ). 
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the state corresponding to the relevant measurement outcome. For example, we may consider 

measurements along n̂ that yield outcomes A = +1 and B = +1. The state corresponding 

to this measurement outcome is |Hi |HiB . Using the expression for the incoming state |ΨiA 

in Eq. (9), we may calculate the amplitude as � � 

A(+1, +1|0◦ , 0◦) = BhH|AhH| |Ψi � �� � 
1 

= √ B hH|AhH| |Hi |V i − |V i |HiA B A B
2�� �� � � �� �� 
1 (10)

= √ BhH|V iB AhH|HiA − BhH|HiB AhH|V iA 
2� � 
1 

= √ 0 × 1 − 1 × 0 
2 

= 0 . 

In moving from the second line to the third, we have made use of the fact that the states per-

taining to particles A and B belong to distinct vector spaces, so we always have B hψ2|ψ1iA = 

0 and Ahψ1|ψ2iB = 0 for any states |ψ1i and |ψ2iB. In moving from the third to the fourthA 

line, we have made use of the orthogonality of the states |Hi and |V i, as in Eq. (5): for 

each particle, AhH|V iA = AhV |HiA = B hH|V iB = B hV |HiB = 0. We have also used the 

fact that these states are normalized, as in Eq. (6). Thus we see that for a pair of particles 

prepared in the state |Ψi of Eq. (9), the amplitude to measure A = +1 and B = +1 along 

the orientation n̂ vanishes. Therefore we find the probability 

, 0◦) = , 0◦) 
2 

p(+1, +1|0◦ A(+1, +1|0◦ = 0 . (11) 

According to quantum mechanics, there should be zero probability of measuring A = +1 

and B = +1 along n̂ for pairs of particles prepared in state |Ψi. A similar calculation yields 

p(−1, −1|0◦ , 0◦) = 0 for particles prepared in state |Ψi. 
On the other hand, we find a nonzero probability to measure A = +1 and B = −1: � � 

A(+1, −1|0◦ , 0◦) = B hV |AhH| |Ψi � �� � 
1 

= √ B hV |AhH| |Hi |V i − |V i |HiA B A B
2�� �� � � �� �� 
1 

= √ B hV |V iB AhH|HiA − B hV |HiB AhH|V iA (12) 
2� � 
1 

= √ 1 × 1 − 0 × 0 
2 
1 

= √ . 
2 
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�� ��So then we find 
2 1 

p(+1, −1|0◦ , 0◦) = A(+1, −1|0◦ , 0◦) = . (13)
2 

The same series of steps yields p(−1, +1|0◦ , 0◦) = 1/2. Therefore we see that when both 

polarizers are oriented along the original direction n̂, quantum mechanics predicts that 

physicists should find the results A = +1, B = −1 half the time (probability = 1/2), and 

A = −1, B = +1 half the time. Note that this calculation does not enable us to predict 

which specific result will arise on a given experimental run. When using quantum mechanics, 

we are only able to calculate the probability to find a specific outcome on any given run. 

Measurement Correlations with Rotated Polarizers 

The real genius of John Bell’s work comes from allowing each physicist to rotate the polarizing 

filter at her detector station by some angle away from the original direction n̂, and then 

considering how the correlations in measurement outcomes vary. Suppose that the physicist 

at the left, whose detector station performs measurements on particle A, chooses to rotate 

her polarizing filter by some angle θa away from the original direction n̂, while the physicist 

at the right, who measures particle B, rotates her polarizing filter by some other angle θb 

away from n̂. The angle between the two polarizing filters is then given by θab = θa − θb. 

Using Eq. (8), the states that correspond to measurement outcomes A = ±1 once the 

physicist at the left detector has rotated her polarizing filter by angle θa may be written 

|Ȟ iA = |HiA cos θa + |V iA sin θa , 
(14) 

|V̌ iA = − |Hi sin θa + |V i cos θa ,A A 

while the states that correspond to measurement outcomes B = ±1 when the polarizing 

filter at the right detector has been rotated by angle θb may be written 

|H̃ iB = |Hi cos θb + |V i sin θb ,B B 
(15) 

|Ṽ iB = − |Hi sin θb + |V i cos θb .B B 

Then we may calculate various amplitudes, such as � � 

A(+1, +1|θa, θb) = B hH̃ |AhȞ | |Ψi �� �� �� 

= BhH| cos θb + BhV | sin θb AhH| cos θa + AhV | sin θa |Ψi � (16) 
= B hH|AhH| cos θb cos θa + B hH|AhV | cos θb sin θa � 

+ BhV |AhH| sin θb cos θa + BhV |AhV | sin θb sin θa |Ψi . 
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Given the form of |Ψi in Eq. (9) and the orhogonality of |Hi and |V i states, the only nonva-

nishing contributions in Eq. (16) come from terms proportional to B hV |AhH| and BhH|AhV |, 
so we then find � � �� � 

1 A(+1, +1|θa, θb) = √ − BhH|HiB AhV |V iA cos θb sin θa 
2 � �� � � 

+ B hV |V iB AhH|HiA sin θb cos θa � � 
1 

= √ − cos θb sin θa + sin θb cos θa (17) 
2 
1 

= √ sin(θb − θa)
2 
1 

= −√ sin θab , 
2 

where the penultimate step makes use of the trigonometric angle-addition formula, and the 

final step follows upon using θab = θa − θb and sin(−θab) = − sin θab. Following the same 

series of steps, we may calculate the other amplitudes: � � 
1 A(−1, −1|θa, θb) = B hṼ |AhV̌ | |Ψi = −√ sin θab , 
2� � 

1 A(+1, −1|θa, θb) = B hṼ |AhȞ | |Ψi = √ cos θab , (18)
2� � 
1 A(−1, +1|θa, θb) = B hH̃ |AhV̌ | |Ψi = −√ cos θab . 
2 

Taking the absolute squares, we then find the probabilities for these various outcomes: 

1 
p(+1, +1|θa, θb) = p(−1, −1|θa, θb) = sin2 θab ,

2 (19)
1 

p(+1, −1|θa, θb) = p(−1, +1|θa, θb) = cos 2 θab . 
2 

We now have all the pieces we need to calculate the quantum-mechanical prediction for the 

correlation function E(a, b) as in Eq. (3), applied to a pair of particles prepared in the state 

|Ψi of Eq. (9). For an angle θab between the orientations of the polarizers at the left and 

right stations, the correlation function takes the form X 
E(a, b) = AB p(A, B|a, b) 

A,B=±1 

= (+1)(+1) p(+1, +1|θa, θb) + (+1)(−1) p(+1, −1|θa, θb) 

+ (−1)(+1) p(−1, +1|θa, θb) + (−1)(−1) p(−1, −1|θa, θb) (20) 

= sin2 θab − cos 2 θab 

= − cos(2θab) , 
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Figure 2: In a test of the Bell-CHSH inequality, physicists can select various angles between their 
detector settings (a, a0) and (b, b0). A common choice is to set θab = θa0b = θa0b0 = θ, and then 
θab0 = 3θ. 

where the last step follows upon using the usual double-angle formula. As a quick reality 

check, note that for the case in which the two polarizers are each aligned along n̂, so that 

θab = 0, the expression in Eq. (20) indicates that the two photons should always be measured 

to have opposite polarizations: either A = +1 and B = −1, or A = −1 and B = +1, exactly 

as we would expect from the form of |Ψi in Eq. (9). 

Predictions for the Bell-CHSH Parameter 

Our quantum-mechanical expression for E(a, b) in Eq. (20) holds for any value of θab. So we 

may us it to calculate the quantum-mechanical prediction for the Bell-CHSH parameter S 

defined in Eq. (2): 

S ≡ E(a, b) + E(a 0, b) − E(a, b0) + E(a 0, b0) 
(21) 

= − cos(2θab) − cos(2θa0b) + cos(2θab0 ) − cos(2θa0b0 ) . 

We can consider a particular arrangement among the detector settings (a, a0) and (b, b0), as 

in Fig. 2. In that case, we set θab = θa0b = θa0b0 = θ, and hence θab0 = 3θ. Fig. 3 shows 

how the value of −S varies with the angle θ. 7 Note that for several choices of the angle θ, 

the quantum-mechanical prediction for the Bell-CHSH parameter S exceeds the Bell-CHSH 

inequality of Eq. (4): rather than |S| remaining restricted to |S| ≤ 2, there are scenarios 

predicted in which measurements on quantum systems should be more strongly correlated 

than the Bell-CHSH inequality would allow, with |S| > 2. In particular, the predicted 

correlations are maximized for θ = 22.5◦ . For that choice of relative orientations among the √ √ 
detector settings, we have cos(2θ) = cos(45◦) = 1/ 2 and cos(6θ) = cos(135◦) = −1/ 2, 

7In Fig. 3 I plot −S rather than S because the Bell-CHSH inequality applies to |S|, and I find it easier 
to visualize the main peaks as in Fig. 3. If we had considered correlations among measurements on pairs of√ 
particles prepared in some other maximally entangled state, such as |Φi = {|Hi |Hi + |V i |V iB }/ 2,A B A 
then our expression for S would have had the opposite overall sign from the expression in Eq. (21), though, 
obviously, the same behavior of |S|. 
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Figure 3: The quantum-mechanical prediction for the Bell-CHSH parameter −S from Eq. (21) 
when we select the angles between the various detector settings (a, a0) and (b, b0) as in Fig. 2. 
Certain choices of the angle θ√, such as θ = 22.5◦ , yield a maximum predicted violation of the 
Bell-CHSH inequality: |S| = 2 2 rather than |S| ≤ 2. 

which yields √ 
Smax 
QM = 2 2 = 2.83 . (22) 

This is known as the “Tsirelson bound”: the maximum value for the Bell-CHSH parameter 

predicted to occur for quantum systems.8 

As Bell demonstrated, local-realist theories and quantum mechanics make substantially 

different predictions for the degree of correlation among measurements on pairs of particles 

that have been prepared in a certain way. Moreover, the quantitative difference between √ 
|S| ≤ 2 and |S| = 2 2 is sufficiently large that Bell hoped even fairly rudimentary experi-

ments might be able to distinguish between these predictions empirically.9 

The first experimental test of Bell’s inequality was conducted by John Clauser and Stuart 

Freedman at the Lawrence Berkeley Laboratory in California in 1972. They found results 

consistent with the quantum-mechanical predictions, violating the Bell-CHSH inequality to 

high statistical significance.10 Since that time, dozens of additional experimental tests have 

been conducted, subjecting different types of matter to measurements with different types 

of detectors. Even more important, recent experiments have closed a series of “loopholes”: 

logical possibilities — however seemingly remote or implausible — by which a local-realist 

theory could give rise to correlated measurements that mimic the expectations from quantum 

8B. S. Cirel’son, “Quantum generalizations of Bell’s inequality,” Lett. Math. Phys. 4 (March 1980): 
93-100. 

9Bell, “On the Einstein-Podolsky-Rosen paradox”; Bell, Speakable and Unspeakable in Quantum Mechan-
ics. 

10Stuart J. Freedman and John F. Clauser, “Experimental test of local hidden-variable theories,” 
Phys. Rev. Lett. 28: 938-941. 
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theory, exceeding Bell’s bound. For example, during 2016–2018 my own group conducted a 

series of “Cosmic Bell” experiments, in which we used real-time astronomical observations 

of light from distant objects, such as high-redshift quasars, as sources of randomness to 

determine which detector settings to use at our two detector stations for each experimental 

run. Our goal was to minimize the possibility that the choices of measurements to be 

performed on any given experimental run could have had some unanticipated correlation with 

the properties of the entangled particles emitted from the source.11 To date, every published 

test of Bell’s inequality, including the recent experiments that address various loopholes, has 

been consistent with the predictions of quantum mechanics.12 The experimental evidence is 

stronger than ever: quantum entanglement seems to be a robust feature of our world, not 

only a theoretical prediction. 

Faster-Than-Light Communication? 

Although Einstein did not live to see either Bell’s 1964 paper or the earliest experimental 

tests of Bell’s inequality, he harbored serious concerns about quantum entanglement for years 

after publishing his 1935 EPR paper. He famously wrote to his friend Max Born in March 

1947, for example, that he “cannot seriously believe in [quantum mechanics] because the 

theory cannot be reconciled with the idea that physics should represent a reality in time and 

space, free from spooky actions at a distance.”13 

Why did Einstein object to entanglement as “spooky action at a distance”? Much like 

Bell, Einstein and his EPR co-authors had imagined that each physicist conducting an 

experiment like that shown in Fig. 1 would have some choice as to which specific type of 

measurement to perform on the particle heading her way from the central source. If the 

11My colleagues and I proposed this new type of “Cosmic Bell” experimental test in Jason Gallicchio, 
Andrew S. Friedman, and David I. Kaiser, “Testing Bell’s inequality with cosmic photons: Closing the 
setting-independence loophole,” Phys. Rev. Lett. 112 (2014): 110405, arXiv:1310.3288. Upon teaming up 
with experimentalist Anton Zeilinger and his group at the Institute for Quantum Optics and Quantum Infor-
mation in Vienna, we next conducted a pilot test: Johannes Handsteiner et al. (Cosmic Bell collaboration), 
“Cosmic Bell test: Measurement settings from Milky Way stars,” Phys. Rev. Lett. 118 (2017): 060401, 
arXiv:1611.06985. More recently our group conducted a test using light from extragalactic sources: Dominik 
Rauch et al. (Cosmic Bell collaboration), “Cosmic Bell test using random measurement settings from high-
redshift quasars,” Phys. Rev. Lett. 121 (2018): 080403, arXiv:1808.05966. For more on our astronomical-
randomness technique, see also Calvin Leung, Amy Brown, Hien Nguyen, Andrew S. Friedman, David 
I. Kaiser, and Jason Gallicchio, “Astronomical random numbers for quantum foundations experiments,” 
Phys. Rev. A 97 (2018): 042120, arXiv:1706.02276. 

12For a review of experimental tests of Bell’s inequality, including recent efforts to address various “loop-
holes,” see David Kaiser, “Tackling loopholes in experimental tests of Bell’s inequality,” in Oxford Handbook 
of the History of Interpretations of Quantum Physics, ed. Olival Freire, Jr. (New York: Oxford University 
Press, forthcoming). 

13Albert Einstein to Max Born, 3 March 1947, as translated and published in Max Born, ed., The Born-
Einstein Letters, trans. Irene Born (New York: Macmillan, 1971), on p. 158. 
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physicist at the left detector happened to choose to measure her particle’s position, then — 

according to the EPR authors’ “reality criterion” — there must exist an “element of reality” 

corresponding to the precise position of the other particle, traveling toward the detector on 

the right side, since such a value could be calculated with certainty based on the outcome 

at the left detector. If, instead, the physicist at the left detector had chosen to measure the 

momentum of her particle, then there would exist an “element of reality” corresponding to 

the precise value of momentum of the right-moving particle. Yet according to Heisenberg’s 

uncertainty principle, the right-moving particle could not have simultaneously sharp values 

of both position and momentum. So how would that particle “know” which of its properties 

should have a definite value by the time it reached its own detector? If the detectors were 

sufficiently far apart from each other, and the physicist at the left waited until the last 

possible moment to select the type of measurement her detector would perform, then there 

would be no time — even for a light signal — to update the right-moving particle as to 

which property it “should” have. The correlation of the particles’ behavior inherent in 

the quantum-mechanical description, Einstein was convinced, implied some faster-than-light 

“action at a distance.” To this day, entanglement is sometimes referred to as “quantum 

nonlocality.” 

Given the strong correlations that persist between entangled particles, even after they 

have moved an arbitrary distance apart from each other, a natural question to ask — and one 

that several physicists did indeed ask upon learning about Bell’s inequality in the 1960s and 

1970s — is whether entanglement can be used to send messages faster than light.14 According 

to the quantum-mechanical description of entanglement, the answer, alas, is “no.” 

Remember that Bell tests involve comparing measurement outcomes (A, B) from distant 

detector stations, as the detector settings (a, b) are varied. Only when we collect both 

the lists of detector settings that were actually used on each experimental run, as well as 

the measurement outcomes for each run, can we identify a distinct signature of quantum 

entanglement, such as a violation of the Bell-CHSH inequality. If we only have access 

to information from one side of the experiment — say, a list of detector settings (a) and 

measurement outcomes (A) from the left detector — then we have no way to know whether 

those measurement outcomes showed any particular correlation with whatever might have 

happened at the right detector. In fact, if all we have is access to the list from one detector, 

all we can ever measure is a random series of +1’s and −1’s, each occurring with equal 

frequency but in an unpredictable order. That is, data from only one side of a Bell test is 

indistinguishable from random noise. 

In Eq. (19) we calculated the probabilities for various joint outcomes (A, B) given joint 

14See esp. Kaiser, How the Hippies Saved Physics, chap. 9. 
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detector settings (a, b). If we only have access to information from the left detector, then all 

we can do is compare the output of the detector with our predictions for various measurement 

outcomes A = ±1 when the polarizing filter at that detector is oriented at an angle θa. In 

particular, there should not be any change in the probabilities to find various outcomes A at 

the left detector based on the choice of what detector setting b to use at the distant detector. 

(If one could affect the outcomes A on the left by changing the detector setting b on the 

right, then one could send signals from right to left arbitrarily quickly.) Our test is therefore 

whether 

p(A = +1|a, b) = p(A = +1|a, b0) and p(A = −1|a, b) = p(A = −1|a, b0) . (23) 

The probabilty p(A|a, b) is just given by the sum over the (unknown) measurement outcomes 

at the right detector: X 
p(A|a, b) = p(A, B|a, b) . 

B=±1 

(24) 

Using Eq. (19), we find 

p(A = +1|θa, θb) = p(+1, +1|θa, θb) + p(+1, −1|θa, θb) 

= 
1 
sin2 θab + 

1 
cos 2 θab (25)2 2 

1 
= ,

2 

independent of the relative orientation of the polarizing filters at each detector. Hence we 

find precisely the same answer for when the polarizer at the right detector is rotated to some 

other angle θb0 rather than θb: p(A = +1|θa, θb0 ) = 1/2. Likewise 

p(A = −1|θa, θb) = p(−1, +1|θa, θb) + p(−1, −1|θa, θb) 

= 
1 
cos 2 θab + 

1 
sin2 θab (26)2 2 

1 
= ,

2 

again independent of the angle θb; so as before we find p(A = −1|θa, θb0 ) = 1/2. Not only are 

the “no-signaling” criteria of Eq. (23) satisfied. We find an even stronger result: the output 

at the left detector is nothing other than a random sequence of A = +1 and A = −1, each 

occurring with probability = 1/2, the very definition of random noise! 

According to quantum mechanics, therefore, no information can be conveyed faster than 

light by exploiting quantum entanglement. The signal that two particles really were entan-

gled can only be ascertained once we use some other means of communication — limited 

by the speed of light — to collate information about detector settings and measurement 

outcomes from both detectors. 
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Appendix: Derivation of Bell’s Inequality 

The EPR authors had argued that quantum mechanics was incomplete. Bell argued that 

if a more complete physical description were to remain compatible with local realism, the 

measurement outcomes A and B would need to be determined by functions of the form 

A(a, λ) = ±1 , B(b, λ) = ±1 . (27) 

Here A and B are the measurement outcomes at each detector given detector settings a 

and b, and λ is shorthand for any other properties of the particles prepared at the source 

σ that could affect the measurement outcomes A and B. (The extra properties λ, not 

included in a standard quantum-mechanical description, are often called “hidden variables.”) 

As Bell emphasized, the forms of A(a, λ) and B(b, λ) in Eq. (27) incorporate locality: the 

measurement outcome at the left detector, A, could only depend on the detector setting at 

that detector (a) and on the particles’ shared properties (λ); the measurement outcome A 

could not depend on either the choice of detector setting (b) or the measurement outcome 

(B) at the right detector, and vice versa.15 

Bell imagined that for a given detector setting a and a particular value λi, A(a, λi) = +1, 

while for that same detector setting and a distinct value λj , A(a, λj ) = −1, and similarly 

for B(b, λ). The parameters λ would vary across experimental runs, governed by some 

probability distribution p(λ); presumably on any given experimental run, both particles 

would share the same value of λ, since it presumably arose during the process by which that 

particular pair of particles was generated at the source σ. On a given experimental run, 

therefore, the particles would share a particular value λi and be subjected to measurements 

with the joint detector settings (a, b). In that case, the product of the measurement outcomes 

at the two detectors would be A(a, λi) B(b, λi). The expectation value E(a, b) would then 

be given by averaging over many trials while holding (a, b) fixed. Across those trials, the 

quantity that would change would be λ, so that in a local-realist theory, Z 
E(a, b) = dλ p(λ) A(a, λ) B(b, λ) . (28) 

15Bell, “On the Einstein-Podolsky-Rosen paradox,” p. 196. 
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For a local-realist theory, the Bell-CHSH parameter S would then take the form 

S ≡ E(a, b) + E(a 0, b) − E(a, b0) + E(a 0, b0)Z � 

= dλ p(λ) A(a, λ) B(b, λ) + A(a 0, λ) B(b, λ) � 
(29)

− A(a, λ) B(b0, λ) + A(a 0, λ) B(b0, λ) Z � � � � �� 

= dλ p(λ) A(a, λ) B(b, λ) − B(b0, λ) + A(a 0, λ) B(b, λ) + B(b0, λ) . 

Let us consider the quantity in curly brackets within the integrand in the last line of 

Eq. (29) for a particular value λi. For any particular value λi, the functions B(b, λi) and 

B(b0, λi) can only equal ±1, as in Eq. (27). Suppose that for this particular value λi, these 

functions happen to equal B(b, λi) = +1 and B(b0, λi) = −1. Then for this particular value 

of λ, we have � � � � 

B(b, λi) − B(b0, λi) = +2 , B(b, λi) + B(b0, λi) = 0 . (30) 

Meanwhile, for that same value λi, the functions A(a, λi) and A(a0, λi) can likewise only 

equal ±1. In that case,� � � � �� 

A(a, λi) B(b, λi) − B(b0, λi) + A(a 0, λi) B(b, λi) + B(b0, λi) = 2A(a, λi) = ±2 . (31) 

If, for that same value λi, the functions B(b, λi) and B(b0, λi) instead happened to equal 

B(b, λi) = −1 and B(b0, λi) = −1, we would again have found that one of the two terms 

in square brackets on the left side of Eq. (31) vanished, while the other term had the value 

±2. Given |A(a, λi)| = |A(a0, λi)| = 1, we would again have found that the term in curly 

brackets on the left side of Eq. (31) would have the value ±2. In fact, for any assignments 

A(a, λi), A(a0, λi), B(b, λi) and B(b0, λi) as ±1, we will always find that the expression in 

curly brackets on the left side of Eq. (31) must equal ±2. 
To evaluate the Bell-CHSH parameter S in Eq. (29), we need to average over all the 

possible values λ that could arise on a given experimental run, weighted by the probability 

distribution p(λ). Upon using the fact that the probability distribution p(λ) is normalized,Z 
dλ p(λ) = 1 , (32) 

we arrive at the Bell-CHSH inequality: 

|S| ≤ 2 (33) 

for any local-realist theory.16 

16For generalizations of this derivation, see Andrew S. Friedman, Alan H. Guth, Michael J. W. Hall, David 
I. Kaiser, and Jason Gallicchio, “Relaxed Bell inequalities with arbitrary measurement dependence for each 
observer,” Physical Review A 99 (2019): 012121, arXiv:1809.01307 and references therein. 
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