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Introduction 

These notes discuss two of the main topics for the lecture on “Rethinking Light” in a bit 

more detail: Max Planck’s analysis of blackbody radiation, and Arthur Compton’s study of 

the scattering of high-energy light off of electrons. Reading these notes is optional; the notes 

are meant to fill in some of the gaps in various derivations that we will not cover during our 

class session. 

Blackbody Radiation 

In December 1900, Max Planck introduced a formula to describe the specific pattern of light 

emitted in the form of blackbody radiation. Recall that in the late years of the 19th century, 

physicists (especially in Berlin’s still-new Physikalisch Technische Reichsanstalt, or PTR) 

were studying the pattern of light emitted from a type of object known as a “blackbody”: 

an object that absorbs (nearly) all the incoming light that might fall upon it (so that it 

appears black). When a blackbody is heated to a sufficiently high temperature it will glow, 

emitting a specific pattern of radiation. Above a temperature of about 500◦ C the glow 

will include substantial emission in the visible range of the spectrum, which is detectable by 

the unaided eye. Though the term “blackbody radiation” might sound abstract or esoteric, 

many people are familiar with the phenomenon: think of the reddish-orange glow of charcoal 

on a grill or embers in a fireplace. 

Thanks to his colleagues at the PTR, Planck had access to some of the most up-to-date 

and precise measurements of the spectrum of blackbody radiation: the amount of energy 

emitted per frequency ν, per unit volume. Planck’s formula took the form 

8π hν3 

u(ν, T ) = , (1)
3 hν/kT − 1]c [e 

1 



Figure 1: The energy density per unit frequency, u(ν, T ), for blackbody radiation introduced by 
Max Planck in 1900, as a function of frequency ν, for three temperatures T1 < T2 < T3. As the 
temperature rises, the frequency of peak emission shifts to higher frequencies (toward the blue end 
of the spectrum), and the total energy output increases. 

where k is Boltzmann’s constant (familiar from statistical mechanics), and h was a new uni-

versal constant, soon dubbed “Planck’s constant.” Both the peak frequency of emission and 

the overall amount of energy emitted depend on the temperature T to which the blackbody 

has been heated. The characteristic shape of the energy density per unit frequency, u(ν, T ), 

is shown in Fig. 1 for three temperatures T1 < T2 < T3. 

Physicists and historians continue to debate how Planck arrived at the expression in 

Eq. (1), and what Planck thought his own equation really meant.1 In these notes, we will 

briefly consider a modern approach to deriving Planck’s expression in Eq. (1), to highlight 

why physicists today consider it to be such a novel break with previous approaches to the 

interaction between light and matter. 

The quantity u(ν, T ) represents the amount of energy emitted by a blackbody per unit 

frequency per unit volume. To arrive at the expression in Eq. (1), we may proceed in two 

steps: derive an expression for the number of independent radiation modes within a volume 

V per frequency ν, and separately derive an expression for the average energy of each mode. 

In other words, our goal is to find expressions for each quantity on the right side of the 

1For an indication of the range of debate over Planck’s original derivation and interpretation of Eq. (1), 
compare Thomas S. Kuhn, Black-Body Theory and the Quantum Discontinuity, 1894 - 1912 (New York: 
Oxford University Press, 1978) and Kuhn, “Revisiting Planck,” Historical Studies in the Natural Sciences 
14 (1984): 231-252, with the recent discussion in Michael Nauenberg, “Max Planck and the birth of the 
quantum hypothesis,” American Journal of Physics 84 (Sept 2016): 709-720. 
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following expression: � � � � 

u(ν, T ) = 
energy density 
per frequency 

= 
number of modes 

per frequency per unit volume 
× 

average energy 
per mode 

. 

(2) 

Planck calculated the first of these terms in a manner that was totally consistent with the 

physics of the 19th century. The big change comes with how to evaluate the second term: 

the average energy per mode. 

In the Appendix I describe how to calculate the number of radiation modes per frequency 

per unit volume within a cavity of fixed size. Planck found � � 
number of modes 8πν2 

= . (3)
per frequency per unit volume c3 

As we will see in the Appendix, Planck’s approach to deriving this expression made use of 

Maxwell’s treatment of electromagnetic waves. In fact, several of Planck’s predecessors had 

derived this expression during the 1880s and 1890s. 

The next step, according to Eq. (2), is to find an expression for the average energy per 

mode, which we may denote �̄. If we were to continue to use (by-then) standard arguments 

from 19th century physics, we would conclude that in equilibrium at a temperature T , each 

radiation mode should have an average energy �̄ = kT . (This is known as the “equipartition 

theorem.”) This result followed from the pioneering studies of statistical mechanics by figures 

like Maxwell and Ludwig Boltzmann. The argument is that in equilibrium, the probability 

that a physical system will be found in a state of energy E is weighted by the “Boltzmann 

factor” exp[−E/kT ]: the greater the energy of the associated state, the less likely it would 

be to find the system in such a state. If we want to find the average value of the energy per 

mode in equilibrium, we calculate the expectation value � � R ∞ 
average energy 0 d� � e−�/kT 

= �̄  classical = R ∞ . (4)
per mode d� e−�/kT 

0 

Using Z ∞ 

dx e−x/a = a for Re[a] > 0 , Z ∞ 
0 (5) 
dx x e−x/a = a 2 for Re[a] > 0 , 

0 

we find � � 
average energy 

= �̄classical = kT , (6)
per mode 

consistent with the (classical) equipartition theorem. Combining Eqs. (3) and (6), we then 

find, for Eq. (2), 
8πν2 

u(ν, T ) = kT . (7)
3c 
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This form for the energy density per frequency is known as the “Rayleigh-Jeans” spectrum. 

Note that according to Eq. (7), the energy of radiation emitted by a blackbody would grow 

without limit; the blackbody would emit more and more energy at higher and higher fre-

quencies. This became known as the “ultraviolet catastrophe.” If one took this expression at 

face value, Maxwell’s treatment of radiation, combined with then-standard techniques from 

statistical physics, suggested that a blackbody should emit an unlimited amount of energyR 
per volume — that is, the energy density, ρ(T ) = dν u(ν, T ), diverges once one integrates 

u(ν, T ) over all possible frequencies ν. Such an expression clearly was not consistent with 

ordinary experience, let alone the increasingly precise data measured by Planck’s colleagues 

at the PTR. 

What Planck did next — and what he thought his next steps actually implied about 

the nature of radiation — remains a point of controversy among physicists and historians.2 

The standard view among physicists today is that quantum theory avoids the ultraviolet 

catastrophe, and yields an expression for u(ν, T ) that matches high-precision experimental 

data, by replacing the (classical) equipartition theorem with an entirely new method for 

accounting for the allowable energies of matter and radiation at the atomic scale. That 

is, in modern derivations, we arrive at the form of the expression in Eq. (1) by restricting 

the allowable energies per mode to discrete, quantized values: in place of the continuum of 

possible values of � over which we integrated in Eq. (4) to find �̄  classical, modern quantum-

theoretic treatments sum over a set of discrete values, �n = nhν, with n a non-negative 

integer. On this modern view, a radiation mode in the cavity can carry one unit of energy 

(hν), or two units (2hν), or 57 units, but not 1.3 units. 

In place of Eq. (4), we write � � P∞ −nhν/kT average energy nhν e n=0 = �̄  quantum = P∞ . (8)
per mode 

n=0 e
−nhν/kT 

To evaluate Eq. (8), we can use some clever tricks, including the usual expression for summing 

a geometric series: 
∞X 1 

x n = for |x| < 1 . (9)
1 − x 

n=0 

Then the denominator in Eq. (8) may be evaluated as 

∞ ∞X X� �n 1−nhν/kT −hν/kT e = e = . (10)−hν/kT )(1 − e 
n=0 n=0 

2See, e.g., the references by Kuhn and Nauenberg in footnote 1. 
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For the numerator, let us define β ≡ hν/kT , so that we may write 

∞X ∞X 
−nhν/kT nhν e = hν −nβ n e 

n=0 n=0" 

= hν − 
d 

# 
∞X 

−nβ e � 
dβ 

n=0� �� (11) 
d 1 

= hν − 
dβ −β1 − e
−βe

= hν .2−β )(1 − e

Combining Eqs. (10) and (11), Eq. (8) then may be written � � −hν/kT average energy hν e 
= �̄quantum = 

per mode [1 − e−hν/kT ] 
(12)

hν 
= . 
[ehν/kT − 1] 

We now have expressions for each term on the right side of Eq. (2), which yields Planck’s 

expression for the energy density per frequency: 

8π hν3 

u(ν, T ) = , (13)
3 hν/kT − 1]c [e 

exactly as in Eq. (1). 

Thomas Kuhn contends that Planck himself did not reason this way when he first derived 

Eq. (13) in 1900. In particular, Kuhn argues that Planck set the total energy of the system 

to be an integer multiple of hν, X 
Etotal = �n = Nhν , (14) 

n 

but that Planck did not restrict each radiation mode to have a quantized energy �n = nhν. 

Moreover, Kuhn continues, in Planck’s original derivation, he considered energies for sub-

systems “in the range (�i, �i +Δ�i)”; that Planck used bins of size � = hν for his accounting, 

but then counted how many sub-systems with continuous energies fell within bins [0, �], [�, 2�], 

and so on. In his 1906 lectures, Kuhn notes, Planck still spoke of continuous (rather than 

quantized) energy exchange between the matter of the blackbody and the emitted radiation.3 

Other historians and physicists continue to scrutinize Planck’s original derivation as well as 

Planck’s re-derivations during the years after 1900.4 What all commentators agree upon 

3See Kuhn, Black-Body Theory, and Kuhn, “Revisiting Planck.” 
4For a review of more recent analyses and a comprehensive list of additional references on the topic, see 

Nauenberg, “Max Planck and the birth of the quantum hypothesis.” 
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is that Planck was highly reluctant to break with the statistical arguments (by Maxwell, 

Boltzmann, and others) that had become standard in his day. Planck wrote to a colleague as 

late as 1931: “What I did can be described as simply an act of desperation. [... Introducing 

bins of size � = hν] was purely a formal assumption and I really did not give it much 

thought.”5 

No matter what Planck thought about the derivation of his expression in Eq. (13), we do 

know why he had some confidence about its form. For small frequencies (long wavelengths), 

Eq. (13) coincides with the Rayleigh-Jeans expression. In particular, for hν � kT , we may 

expand "� �2 
# 

hν hνhν/kTe = 1 + + O . (15)
kT kT 

In that limit, Eq. (13) becomes "� #�2
8π hν 

u(ν, T ) = ν2 kT + O , (16)
3c kT 

which exactly matches the Rayleigh-Jeans expression in Eq. (7). Unlike the Rayleigh-Jeans 

form in Eq. (7), however, Planck’s expression in Eq. (13) does not lead to an “ultraviolet 

catastrophe.” In the limit of large frequencies (short wavelengths), hν � kT , we may expand � � 
1 1 kT −hν/kT = = e + O , (17)

hν/kT − 1] hν/kT [1 − e−hν/kT ][e e hν 

so that Planck’s expression in Eq. (13) takes the form � � 
8π kT −hν/kT u(ν, T ) = hν3 e + O . (18)
3c hν 

The exponential decay of this function with large ν more than compensates for the factor 

of ν3 , and the overall energy density per frequency falls gently with increasing frequency, 

as shown in Fig. 1. Planck had more than only these theoretical features to bolster his 

confidence. He was also in close contact with experimentalists at the PTR who were refining 

their own measurements of blackbody spectra in their laboratory. As he lated recalled: “The 

very next morning [after first presenting his expression at a meeting of the Berlin Physical 

Society] I received a visit from my colleague [Heinrich] Rubens [an experimental physicist 

at the PTR]. He came to tell me that after the conclusion of the meeting, he had that very 

night checked my formula against the results of his measurements and found a satisfactory 

concordance at every point.”6 

5Max Planck to Robert W. Wood, 7 October 1931, as quoted in Nauenberg, “Max Planck and the birth 
of the quantum hypothesis,” p. 715. 

6Max Planck, Scientific Autobiography, trans. F. Gaynor (New York: Philosophical Library, 1949), pp. 39-
41, as quoted in Nauenberg, “Max Planck and the birth of the quantum hypothesis,” on p. 713. 
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Compton Scattering 

Albert Einstein introduced his “heuristic” notion of a light quantum in 1905, in an article en-

titled, “On a heuristic point of view concerning the production and transformation of light.”7 

About twenty years later, physicists adopted the term “photon” to refer to an individual 

light quantum, or particle of light. Einstein considered his paper on light quanta to be the 

most “revolutionary” of the papers he wrote that year.8 In the paper, he suggested that 

“in the propagation of a light ray emitted from a point source, the energy is not distributed 

continuously over ever-increasing volumes of space, but consists of a finite number of energy 

quanta localized at points of space that move without dividing, and can be absorbed or 

generated only as complete units.”9 

Although Einstein’s suggestion of light quanta offered a particularly economical expla-

nation of puzzling experimental results, such as the photoelectric effect, most physicists 

remained skeptical of the idea for many years to come. Even after Max Planck had become 

convinced of the importance of Einstein’s work on topics like relativity, for example, he still 

harbored doubts about Einstein’s idea of light quanta. In urging his colleagues to invite 

Einstein to join the prestigious Prussian Academy of Sciences in 1913, Planck explained, 

“In sum, one can say that there is hardly one among the great problems in which modern 

physics is so rich to which Einstein has not made a remarkable contribution. That he may 

sometimes have missed the target in his speculations, as, for example, in his hypothesis of 

light quanta, cannot really be held too much against him.”10 

An important step in convincing the broader community to take the idea of light quanta 

seriously came in the early 1920s, with the experiments by Arthur H. Compton on the 

scattering of high-energy light off of electrons. In fact, whereas nearly two decades elapsed 

before Einstein’s “heuristic” suggestion of light quanta became broadly accepted within the 

community, Compton’s experimental results were greeted with fanfare almost immediately. 

He submitted his article on the new results to the Physical Review in December 1922; the 

paper was published in May 1923; and Compton was awarded the Nobel Prize for his efforts 

in 1927! Physicist Robert Millikan lauded Compton’s experiment for “keep[ing] the physicist 

¨7Albert Einstein, “Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen 
Gesichtspunkt,” Annalen der Physik 17 (1905): 132-148. An English translation is available in John Stachel, 
Einstein’s Miraculous Year: Five Papers that Changed the Face of Physics (Princeton: Princeton University 
Press, 2005 [1998], 177-198. 

8Albert Einstein to Conrad Habicht, May 1905, as translated in The Collected Papers of Albert Ein-
stein, Volume 5, The Swiss Years: Correspondence, 1902-1914 (English Translation Supplement) (Princeton: 
Princeton University Press, 1995), pp. 19-20. 

9Einstein, “Heuristic point of view,” as translated in Stachel, Einstein’s Miraculous Year, p. 178. 
10Max Planck, as quoted in Abraham Pais, Subtle is the Lord: The Science and the Life of Albert Einstein 

(New York: Oxford University Press, 1982), on p. 382. 
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Figure 2: Arthur Compton interpreted his experimental results of the scattering of high-energy 
X-rays off of electrons in terms of two-body scattering among discrete particles. In this case, the 
incoming light quantum scattered off an electron at rest; following the collision, the light quantum 
was scattered at some angle θ from the direction of its original path, while the electron recoiled 
along some angle ϕ. 

modest and undogmatic.”11 

Compton had not set out to test Einstein’s ideas about light quanta; on the contrary, 

Compton, like most physicists, had been skeptical of Einstein’s idea. Instead, Compton 

was interested in the behavior of high-energy lightwaves, and began conducting a series of 

experiments on the reflection of X-rays. He measured wave-like properties of the light before 

and after reflection. In particular, he found a shift in the wavelength of the light following 

scattering. The amount of the shift in wavelength depended on the angle of scatter: 

Δλ ≡ λ0 − λ ∝ (1 − cos θ) , (19) 

where λ was the wavelength of the incoming lightwave and λ0 the wavelength of the scattered 

lightwave. Compton found he could only make sense of these experimental results if he in-

voked Einstein’s hypothesis about light quanta. Rather than interpreting his light-reflection 

experiments in terms of continuous waves, Compton analyzed his results as if the incoming 

light consisted of individual particles, each with a definite energy and momentum, and that 

individual light quanta scattered off of electrons much as two billiard balls would collide on 

a pool table. In other words, Compton was only able to make sense of his light-reflection 

results if he treated the interaction of light with matter in terms of two-body scattering 

among discrete particles, as in Fig. 2. 

Compton analyzed the interaction between high-energy X-rays and electrons by balancing 

the total energy and momentum of the system, before and after the collision.12 Prior to the 

11Arthur H. Compton, “A quantum theory of the scattering of X-rays by light elements,” Physical Review 
21 (1923): 483-502. Robert Millikan’s quotation from 1926 may be found in Roger H. Steuwer, The Compton 
Effect (New York: Science History Publications, 1975), p. 288. 

12In his 1923 article, Compton used the term “light quantum” to describe individual particles of light. For 
ease of notation in these notes, I will use the term “photon,” which entered into common usage a few years 
after Compton’s original publication. 
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collision, the incoming photon moved along the x̂ axis with energy Ephoton and momentum 

pphoton while the electron sat at rest, with energy Eelectron = mc2 and momentum pelectron = 0. 

Following the collision, the photon scattered at some angle θ from its original direction 

of motion, with post-collision energy E 0 and momentum p0 while the electronphoton photon, 

recoiled along some angle ϕ from the incoming photon’s path with (relativistic) energy 

E 0 0= γmc2 and momentum p = γmv. (By the time Compton was conducting his electron electron 

experiments, Einstein’s work on special relativity had become fairly well established; given 

the high energy of the incoming X-rays, Compton readily adopted relativistic kinematics 

for treating the electron’s motion following collision.) To treat the photon’s energy and 

momentum, Compton reluctantly adopted Einstein’s expressions for individual light quanta: 

hc 
Ephoton = hν = ,

λ (20)
Ephoton hν h |pphoton| = = = . 

c c λ 

Keeping in mind that momentum is a vector quantity — so that each component of the 

momentum (px and py) must balance before and after collision — Compton could then write 

three equations to describe the two-body scattering: 

hc hc 
(conservation of energy :) + mc 2 = + γmc2 

λ λ0 

h h 
(conservation of px :) + 0 = cos θ + γmv cos ϕ (21)

λ λ0 

h 
(conservation of py :) 0 + 0 = sin θ − γmv sin ϕ , 

λ0 

where v = |v| is the magnitude of the electron’s recoil velocity. He now had three equations 

for three unknowns (λ0 , θ, and ϕ), so he could solve for the quantity of interest, namely, 

Δλ = λ0 − λ. 

First we may square the expressions that come from px and py and add them. From the 

px equation, we find � � 
1 2 1 

γ2 2 2 2 ϕ = h2 m v cos − cos θ + 
λ02 
cos 2 θ , (22)

λ2 λλ0 

and from the py equation we may write � � 

γ2 2 m v 2 sin2 ϕ = h2 1 
sin2 θ . (23)

λ02 

Adding Eqs. (22) and (23) yields � � 
1 1 2 

γ2 2 2 m v = h2 + − cos θ . (24)
λ2 λ02 λλ0 
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Squaring the expression that comes from the conservation of energy (after canceling the 

factor of c that is common to each term), we have �� � �2
h h 

γ2 2 2 m c = − + mc 
λ λ0 � � �� (25)
1 1 2 2mc 1 1 

= h2 + − + − + m 2 c 2 . 
λ2 λ02 λλ0 h λ λ0 

Subtracting Eq. (24) from Eq. (25) yields � 
2 � � � �� 

v 2 2mc 1 12 2 2 2γ2 m c 1 − = h2 − (1 − cos θ) + − + m c . (26) 
c2 λλ0 h λ λ0 

Using the definition of γ, we may rewrite the quantity of the left side of Eq. (26): � 
2 � � 

2 � 

γ2 2 2 2 2 m c 1 − 
v 

= � 
1 

2 �m c 1 − 
v 

c2 1 − v c2 
c (27)2 

2 2 = m c . 

Then the terms m2c2 cancel from each side of Eq. (26), leaving � � 
2 2mc 1 1 
(1 − cos θ) = − , (28)

λλ0 h λ λ0 

or � � 
h 

λ0 − λ = (1 − cos θ) . (29) 
mc 

Not only did this result yield the particular angular dependence that Compton had mea-

sured, as in Eq. (19); the coefficient on the right side of Eq. (29), h/mc, yielded a very close 

fit to Compton’s experimental data, once he plugged in the values for Planck’s constant (h), 

the electron’s mass (m), and the speed of light (c). Whereas Compton had been skeptical of 

Einstein’s light-quantum hypothesis before embarking on his experiments, he found remark-

able agreement with his own data once he applied Einstein’s ideas to treat the scattering of 

light from matter. The coefficient h/mc became known as the “Compton wavelength”: it 

set the scale for the observed shift in wavelength for the scattered light. 

Note the strange mixing of wave and particle notions throughout: Compton produced 

lightwaves of known wavelength λ, and measured the shift in their wavelength following 

scattering; he could only make sense of his empirical results by treating the light as a 

collection of individual particles; and then his result, derived in terms of two-body scattering, 

yielded a new measure of “wavelength,” in terms of the quantity h/mc. This sort of “wave-

particle duality” became emblematic of more systematic attempts to create a first-principles 

quantum mechanics during the mid-1920s. 
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Appendix: Calculating the Number of Radiation Modes 
in a Cavity 

In this Appendix we calculate the number of radiation modes per frequency per unit volume, 

which is one of the main steps in deriving Planck’s expression for the energy density per unit 

frequency of blackbody radiation. During the 1880s and 1890s, blackbody radiation was 

often referred to as “cavity radiation,” since one of the best ways to produce a blackbody 

and measure properties of the resulting radiation was to heat a closed cavity — so that 

inside the cavity there was virtually no incoming light — and then measure the radiation 

that escaped from the cavity through a tiny window. The properties of the radiation from 

the cavity would then be independent of any external radiation that might have otherwise 

reflected off of the cavity itself.13 

Recall from Maxwell’s equation for the propagation of light that the electric field associ-

ated with a lightwave satisfies � � 
∂2 ∂2 ∂2 1 ∂2 

+ + − E(t, x, y, z) = 0 . (30)
∂x2 ∂y2 ∂z2 c2 ∂t2 

We are interested in solutions of this wave equation for the case in which the radiation is 

contained within a cavity, in equilibrium. We may consider a cubic cavity of length L on each 

side. We want to find standing-wave solutions — that is, solutions for E that vanish at the 

boundaries of the cavity. (If the solutions didn’t vanish at the boundaries, then radiation, 

and hence energy, would leak outside the cavity; but in that case, the system within the 

cavity would not remain in equilibrium.) If we adopt a separable form for E(t, x, y, z) = 

T (t)X(x)Y (y)Z(z), then Eq. (30) becomes four separate equations for the four functions: 

d2X d2Y d2Z d2T 
+ k2X = 0 , + k2Y = 0 , + k2Z = 0 , + ω2T = 0 , (31)

dx2 x dy2 y dz2 z dt2 

where � � 
ω2 2 + k2 = c kx 

2 
y + k2 . (32)z 

To satisfy the boundary condition that E(t, x, y, z) vanishes at each edge of the cubic cavity, 

we may write a solution of the form � � � � � � nxπx nyπy nzπz 
E(t, x, y, z) = E0 sin sin sin sin (ωt) , (33)

L L L 
13See, e.g., Nauenberg, “Max Planck and the birth of the quantum hypothesis,” p. 710, and Emilio Segrè, 

“Planck, unwilling revolutionary: The idea of quantization,” in Segrè, From X-Rays to Quarks: Modern 
Physicists and Their Discoveries (San Francisco: W. H. Freeman, 1980), 61-77, on pp. 67-68. 
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Figure 3: To calculate the number of independent radiation modes that can fit into a cavity of 
length L, we consider the volume of a thin spherical shell of radius n = 2L/λ and thickness dn. 
Figure adapted from Figure A.1 in Raymond A. Serway, Clement J. Moses, and Curt A. Moyer, 
Modern Physics (New York: Sanders College Publishing, 1989), on p. 464. 

where E0 is the amplitude of the standing wave, and we have parameterized the wavenumbers 

in each spatial direction as 

nxπ nyπ nzπ 
kx = , ky = , kz = , (34)

L L L 

with nx, ny, and nz each a positive integer. (You can quickly confirm that the solution for E 

vanishes at each of the edges of the cavity, for example when x = 0 and x = L, and similarly 

for the edges in the y and z directions, given that sin(nπ) = 0 for any integer n.) Using 

ω = 2πν to relate the angular frequency ω to the frequency ν, and the usual relation νλ = c, 

Eqs. (32) and (34) then yield a relationship between the integers ni, the cavity length L, 

and the wavelength λ of the standing wave: 

4L2 
2 2 2 nx + ny + nz = . (35)

λ2 

Eq. (35) indicates that for a fixed cavity size L, combinations of the integers (nx, ny, nz) that 
2 2 2yield larger sums (n + n + n ) correspond to standing waves with shorter wavelengths, orx y z 

(from νλ = c) higher frequencies. 

Next we want to count the number of independent radiation modes within the cavity 

that satisfy these boundary conditions, for a given length L. If we define the vector n ≡ 
2 2 2 2(nx, ny, nz), then we see that Eq. (35) is a condition on n ≡ |n|2 = (n + n + n ). Inx y z 

particular, Eq. (35) describes the surface of a sphere of radius n within a three-dimensional 

grid whose axes are nx, ny, and nz, as shown in Fig. 3. Given Eq. (35), the radius n is given 
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by 
2L 2L 

n = = ν , (36)
λ c 

where the last expression follows from using νλ = c. All points on the surface of the sphere 

satisfy Eq. (35) for a given frequency ν (or, equivalently, a given wavelength λ). 

Each unit cube with integer (nx, ny, nz) represents a radiation mode that vanishes at the 

boundaries of the cavity, given the form of E(t, x, y, z) in Eq. (33). The number of such unit 

cubes that correspond to radiation modes with frequency within the range ν and ν + dν is 

given by the volume of the thin spherical shell of radius n and thickness dn indicated in Fig. 3. 

However, we do not want to include every unit cell within the entire spherical shell, because 

our radiation modes are restricted to positive values of nx, ny, and nz. We therefore restrict 

attention to one-eighth of the total spherical shell, as shown in Fig. 3. Moreover, lightwaves 

have two independent polarization states: each combination of (nx, ny, nz) corresponds to 

two independent radiation modes. Combining these factors, we find the number of modes 

N(ν) dν within the spherical shell of thickness dn: 

N(ν) dν =
1 × | {z2 } × | 4πn{z 

2 dn } = πn2 dn =
8π 
3 
L3ν2 dν , 

c| {z8 } polarization states volume of spherical shell 
restriction to ni > 0 

(37) 

where the last expression follows upon using Eq. (36) to relate n to ν. The quantity of 

interest for Eq. (2) is the number density of modes per unit frequency, that is � � 
number of modes 1 8πν2 

= N(ν) = , (38)
per frequency per unit volume V c3 

where the last expression follows upon using the fact that the volume of the cavity is V = L3 . 

Note that our derivation of Eq. (38) relied upon Maxwell’s treatment of electromagnetic 

waves; it was completely consistent with 19th century physics. Planck incorporated this part 

of the derivation when arriving at his expression for u(ν, T ) in Eq. (13), and tinkered instead 

with the expression for the average energy per mode, �̄. 
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