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Introduction 

Today we are going to continue examining electrodynamics the way that good mathematical 

physicists in the late 19th century did, to consider how they approached certain problems. 

This will make the contrast with young Albert Einstein’s approach, to which we will turn in 

the next lecture, more clear. 

To begin, we need to go back to a central conclusion that James Clerk Maxwell reached in 

the 1860s: all of space is filled with a physical, material substance (the “luminiferous ether”), 

and light was simply the “transverse undulation” of electric and magnetic fields within the 

ether. How did Maxwell arrive at this conclusion? Reviewing Maxwell’s approach will 

make more clear how later physicists, such as the Dutch mathematical physicist Hendrik 

A. Lorentz, sought to work within Maxwell’s program and extend it further. We will see 

that Lorentz had at least two distinct challenges in mind when he began working on the 

electrodynamics of moving bodies in the 1880s and 1890s. 

1 Waves for Maxwell and Lorentz 

1.1 Maxwell’s “Transverse Undulations” in the Ether 

We begin with a quick review of wave physics, and how Maxwell’s equations for electricity 

and magnetism led him to think about light as waves of electric and magnetic fields. For 

the sake of brevity, we will write Maxwell’s equations in their modern form, using the vector 
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notation that a later Maxwellian — Oliver Heaviside — invented in the mid-1880s specifically 

to make Maxwell’s equations easier to manipulate:1 

∂B r× E = − ,
∂t 

∂D r× H = + J, (1)∂t 
r · D = 4πρ, 

r · B = 0. 

Here E and B are the electric and magnetic fields, and D and H are the electric displacement 

and magnetic field strength, respectively. The fields D and H quantify how a given material 

is affected by external electric and magnetic fields. In general, the fields D and H are related 

to E and B by the properties of the medium or material: 

D = � E , B = µ H, (2) 

where � is the “dielectric constant” and µ is the “magnetic permeability.” To us, today, 

� and µ quantify how readily the internal constituents within a material — including its 

electrons, ions, and/or clusters of such objects, such as electric and magnetic dipoles — can 

reorient themselves when an external electric or magnetic field is applied.2 To Maxwell and 

his British colleagues, on the other hand, the parameters (�, µ) were related to the elastic 

properties of the underlying ether or other materials; that is, they were analogous to spring 

constants, indicating how quickly a given material could dissipate stresses or tensions that 

arose from the presence of electromagnetic fields.3 

Maxwell calculated how quickly electric and magnetic disturbances would propagate 

within the ether — that is, in regions in which there were no external sources of charge 

or current (so that ρ = J = 0). Being a highly trained Cambridge Wrangler, he had prac-

ticed how to use various mathematical identities among the differential operators, such as 

the following handy identity: for any vector F, one may write4 

r× (r× F) = r (r · F) −r 2F. (3) 

He then found that within an otherwise empty region of space that contained only ether, 

1See Bruce Hunt, The Maxwellians (Ithaca: Cornell University Press, 1991), 245-247. 
2See, e.g., David Griffiths, Introduction to Electrodynamics, 4th ed. (New York: Cambridge University 

Press, 2017), chaps. 4 and 6. 
3See esp. Jed Buchwald, From Maxwell to Microphysics (Chicago: University of Chicago Press, 1985); 

and Olivier Darrigol, Electrodynamics from Ampère to Einstein (New York: Oxford University Press, 2000). 
4On the training of Cambridge Wranglers, see esp. Andrew Warwick, Masters of Theory: Cambridge and 

the Rise of Mathematical Physics (Chicago: University of Chicago Press, 2003). 
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Figure 1: The function f(t, x) of Eq. (6) is a solution to Eq. (5) in one spatial dimension. Shown 
here is f(t, x) with A = 0, B = 1. At a given moment in time, the function f(t, x) oscillates in 
space with a characteristic wavelength λ (left); at a given location in space, the function f(t, x) 
oscillates over time with a characteristic period T (right). 

the electric and magnetic fields would each obey an equation of the same form: � � � � 
∂2 ∂2 

r 2 − �0µ0 E = 0 , r 2 − �0µ0 B = 0, (4)
∂t2 ∂t2 

where �0 and µ0 (to Maxwell) were the corresponding “spring constants” of the ether itself. 

Why did Maxwell interpret this result in terms of the propagation of light? Because (as 

he knew from his Cambridge Tripos training) this is the general form of a wave equation, 

which generically takes the form: � � 
1 ∂2 

2 −r f(t, x) = 0, (5) 
v2 ∂t2 

where v is the speed of the traveling wave. Why is Eq. (5) known as a “wave equation”? 

For simplicity, let us consider motion in a single direction of space, so that x → x. Then we 

see that solutions of Eq. (5) may be written in the form 

f(t, x) = A sin(kx + ωt) + B cos(kx + ωt), (6) 

where A and B are constants, and we have introduced the wavenumber (k) and the angular 

frequency (ω) as: 
2π 2π 

k ≡ , ω ≡ , (7)
λ T 

in terms of the wavelength (λ) and the period (T ). From Eq. (6), we see that solutions to 

the wave equation of Eq. (5) simply oscillate in space and time. Moreover, the quantities λ 

and T are related to the speed of the wave, v, which appears in Eq. (5): 

λ ω 
v = 

T 
= . 

k 
(8) 
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When Maxwell applied the quantitative values for �0 and µ0 that had been inferred from 

various electromagnetic experiments, he found that 

1 
�0µ0 ' 

2 
, (9) 

c 

where c ' 3 × 105 km/s was the speed of light that researchers had independently inferred 

from various astronomical phenomena. That is what convinced Maxwell that light consisted 

of “transverse undulations” of electric and magnetic fields in the luminiferous ether: the 

fields E and B obeyed the simple wave equation of Eq. (4), with the speed of the waves 
√ 5given by v = 1/ �0 µ0 = c. 

1.2 H. A. Lorentz: Generalize for Moving Sources or Receivers 

Maxwell’s deep insight, which united optics with electricity and magnetism, had been ac-

complished by assuming that both the source of light and the receiver of the light were at rest 

with respect to the ether. Beginning in the 1880s, the great Dutch mathematical physicist 

Hendrik A. Lorentz tried to generalize these results to the case in which either the emitter or 

receiver of light was in motion relative to the ether. Hence Lorentz and his contemporaries 

were concerned with the general problem of “the electrodynamics of moving bodies.” Lorentz 

had both mathematical and experimental motivations for his work. We will first consider 

the mathematical side. 

Lorentz knew how to relate the coordinates of different frames of reference which were 

moving with a constant speed v with respect to each other: these were simply the coordinate 

transformations that Galileo had first formulated in the early 1600s, and that Newton had 

codified in the late 1600s: 

x 0 = x + vt , t0 = t. (10) 

(Reference frames that move with a constant speed are called “inertial frames of reference.”) 

Note, in particular, that there was no change for the time coordinate: for Galileo and Newton 

(and their followers right through the end of the nineteenth century), time was simply time, 

and all observers should agree on the rate at which time passes.6 (Newton had famously 

written in the opening passages of his great Principia Mathematica in 1687 that “Absolute, 

true, and mathematical time, of itself, and from its own nature, flows equably without 

relation to anything external, and by another name is called duration.”7 In short: time is 

absolute.) 

5See, e.g., Darrigol, Electrodynamics from Ampère to Einstein, 151-53, 162. 
6See, e.g., Alberto A. Mart́ınez, Kinematics: The Lost Origins of Einstein’s Relativity (Baltimore: Johns 

Hopkins University Press, 2009). 
7Isaac Newton, The Principia: Mathematical Principles of Natural Philosophy, trans. I. Bernard Cohen 

and Anne Whitman (Berkeley: University of California Press, 1999), 408. 
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When Lorentz used this Galilean coordinate transformation and looked at what the 

resulting equation for the E and B fields would look like in the moving frame, he found 

(restricting to a single spatial dimension for simplicity): " #� �2
∂2 1 ∂ ∂ − − v E0(t0 , x 0) = 0, (11)
∂x02 c2 ∂t0 ∂x0 

and a similar equation for B0(t0, x0). But Eq. (11) does not look like the simple form of a 

wave equation; in particular, solutions to Eq. (11) would not be simple sines and cosines, 

akin to the wave behavior we found in Eq. (6).8 

So what? Lorentz knew that we (on the moving Earth) often do observe light behaving 

as sines and cosines. So if the ether is real, and the Earth is really moving through it, how 

could it be that we observe optical phenomena behaving as if the E and B fields obeyed 

Eq. (4) rather than Eq. (11)? 

This presented Lorentz with an important mathematical challenge within the Maxwellian 

tradition: how to bring the new equations for E0(t0, x0) and B0(t0, x0), which would hold in 

a moving reference frame, into the familiar form that had worked so well when describing 

optical experiments. 

Lorentz was a very talented mathematical physicist, and he realized that if he introduced 

a new set of hypothetical rules for coordinate transformations — distinct from the familiar 

Galilean transformation — he could put the wave equation for E(t0, x0) and B(t0, x0) in the 

same form as for the stationary case in Eq. (4). In particular, if the new time coordinate, 

t0 , became a function of x, t, and v, just as x0 transformed as a function of x, t, and v, 

then Lorentz could preserve the form of the wave equation. He called the new coordinate 

t0 = t0(x, t, v) the “local time,” and considered it little more than a mathematical trick: in 

the end, Lorentz concluded, t0 would always be referred back to the genuine, absolute time 

t of the ether rest frame. 

This was Lorentz’s mathematical response to the quandary of the electrodynamics of 

moving bodies: to alter the Galilean coordinate-transformation rules in order to save the 

form of a particularly important set of equations. We’ll see in the next section that Lorentz 

also had an experimental reason for adopting the new transformation rule as well. 

8See, e.g., Darrigol, Electrodynamics from Ampère to Einstein, 327-28; and Arthur I. Miller, Albert 
Einstein’s Special Theory of Relativity: Emergence (1905) and Early Interpretation (1905-1911), 2nd ed. 
(New York: Springer, 1998), 18-37. 
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2 The Michelson-Morley Experiment 

Like all good mathematical physicists of the era, Lorentz knew that light propagated in the 

ether: the ether was the medium in which light waves traveled. Hence there was a natural 

question which occupied the efforts of many physicists in the late 19th century: could one 

detect the Earth’s motion through this all-pervasive ether? Clearly the Earth moved around 

the Sun, and it seemed extremely unlikely that the ether would be moving exactly along with 

the Earth — so there must be some relative motion between the stationary ether and the 

moving Earth. Add on top of this the fact that the ether supported light in its travels, and 

some researchers sought to use the behavior of light to measure the Earth’s motion through 

the ether. This was the experimental context in which Lorentz sought to extend Maxwell’s 

study of light and ether. 

2.1 The Interferometer 

The most sensitive experiment performed to test for the Earth’s motion through the ether 

was devised and conducted by the American experimental physicist Albert Michelson in the 

1880s. Michelson was working at what is now known as Case Western Reserve University 

in Cleveland, Ohio, and was already a renowned expert in optics; in fact, he was the first 

US-based physicist to win the Nobel Prize in Physics, which he received in 1907. At the time, 

his research was among the very few efforts in the US that European-based physicists paid 

any attention to; the scientific community in the US otherwise still seemed like a backwater 

compared to the leading centers in Western Europe.9 

Michelson’s most significant contribution was to use the interference of light to test for 

the Earth’s motion through the ether. To understand his new instrument, the interferometer, 

it will help us to first consider two swimmers in a river. Imagine that each swimmer can only 

swim at a constant speed c with respect to the water; meanwhile, the river flows with respect 

to the shore with a constant speed v. One swimmer swims directly against the current for 

a length L, and then for her return trip she swims directly with the current. The other 

swimmer swims across the river a length L and then back. The question: who will win the 

race? 

For each leg of each swimmer’s journey, we know that 

distance 
time = . (12)

speed 

For the first leg of her journey, the first swimmer has a speed relative to the shore of (c − v), 

9See Daniel J. Kevles, The Physicists: The History of a Scientific Community in Modern America, 3rd 
ed. (Cambridge: Harvard University Press, 1995), 27-29. 
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Figure 2: An analogy for the Michelson-Morley interferometer: two swimmers race in a river with 
current v. They each swim at speed c with respect to the water. The first wimmer starts at point 
A and swims a distance L to point B, then swims back to A. The second swimmer starts at point 
A and swims a distance L across the river to point C, then swims back. 

because she is fighting the river’s current. So her time to swim the length L from location 

A to location B is 
L 

tAB = . (13)
(c − v) 

For her return trip from B to A, her speed as measured from the shore is (c + v) — she picks 

up the speed of the river. So her time to swim from B back to A is 

L 
tBA = . (14)

(c + v) 

The total time for her lap is then 

L L 2L 1 
tABA = + = � � 2 �� . (15)

(c − v) (c + v) c 1 − v 
2c 

The second swimmer must set off at a diagonal to offset the effects of the river’s current. 

Since the river is a distance L across, she will swim along the diagonal R in time tAC . During 

that time, the river’s current will push her straight down a length vtAC . We may then analyze 

her path in terms of a right triangle, and use the Pythagorean theorem: 

R2 = (vtAC )
2 + L2 . (16) 

But remember that she swims at speed c with respect to the water, so R = ctAC . Substituting 
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Figure 3: The function γ of Eq. (19). For v � c, γ ' 1, but γ � 1 as v → c. 

into Eq. (16), we then have 

(ctAC )
2 = (vtAC )

2 + L2 

L 1 (17)−→ tAC = q
c � 

v 
� . 

1 − 
2 

2c 

Her return trip is symmetrical, so we find tCA = tAC , and hence 

2L 1 
tACA = tAC + tCA = q � � . (18) 

c v2 
1 − 2c 

Let us define 
1 

γ ≡ q (19)� 2 � . 
1 − v 

c2 

We note that γ ≥ 1 for all 0 ≤ v ≤ c. 

So who wins the race? Written in terms of γ, we have found � � � � 

tABA = 
2L 

γ2 , tACA = 
2L 

γ. (20) 
c c 

We just saw that for v 6= 0, γ > 1, and hence if there is a current in the river, then swimmer 

1 takes a longer time to return to the starting point than does swimmer 2. So swimmer 2, 

who set off across the river along the diagonal, wins the race. Moreover, we see that the 

difference in their times is � � 
2L 

Δt = tABA − tACA = γ(γ − 1) 
c� �� �2 

�� �4 
� (21)

L v v 
= + O . 

c c c 
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The race is close: the difference in the two swimmers’ lap times is second order in the ratio 

(v/c); hence this race is sensitive to “second-order” effects in (v/c). 

Albert Michelson realized that this thought experiment involving swimmers in a river 

with a current flowing should hold true for light as measured on a moving Earth as well. 

Like the swimmers, light will travel at a constant speed through the stationary ether, at 

speed c. But if the Earth is moving through the ether, there should be an “ether wind” 

that we would feel on our moving platform — like the wind you feel on your face when you 

ride a bicycle through calm air. When you’re at rest with respect to the air, you don’t feel 

any wind, but as soon as you begin to move with respect to the air, you feel the wind on 

your face. Michelson built his interferometer to measure this ether wind on Earth. One of 

the arms of the interferometer would be aligned with the Earth’s motion, and hence light 

beams traveling along that route would be like the first swimmer, swimming directly against 

the river’s current, and then directly with it for the return trip. The second arm of the 

interferometer would be perpendicular to this ether wind; light rays traveling along that 

arm would be akin to the swimmer who set off across the river. 

Just like the swimmers, light that set off along the second arm (perpendicular to the 

ether wind) should therefore return to the starting point before light from the first arm did. 

If the light waves that followed these distinct paths took different amounts of time to return 

to the starting point, then they would arrive out of phase with each other: crests of one 

light wave would not line up with crests of the second light wave. Hence there should be 

interference of the two waves — a pattern that would be readily observable as a series of 

bright and dark patches on a screen. The specific interference pattern would depend on the 

magnitude of the time delay between the two light waves, and hence on the Earth’s motion 

through the ether, v. Thus, reasoned Michelson, he should be able to measure precisely the 

Earth’s speed through the stationary ether. 

He built a modest-sized instrument (with each arm about 1 meter long) and found no 

interference pattern. But we saw in Eq. (21) that the time difference (and hence the details 

of the expected interference pattern) scaled with L, the length of the arms. So in 1887, 

Michelson built a much larger device, together with his assistant, Edward Morley. Their 

new instrument had arms 11 meters long. They set the entire apparatus floating on a huge 

vat of mercury to dampen vibrations from the street, and they took careful measurements 

over several months: swapping the direction in which the arms pointed, looking for seasonal 

effects, and so on.10 

10Gerald Holton, “Einstein, Michelson, and the ‘crucial’ experiment,” in Holton, Thematic Origins of 
Scientific Thought: Kepler to Einstein, rev. ed. (Cambridge: Harvard University Press, 1988), 279-370; see 
also Darrigol, Electrodynamics from Ampère to Einstein, 316-19. 
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Figure 4: Schematic of the Michelson interferometer. Light from a monochromatic source (S) 
encounters a half-silvered mirror. Half of the light passes through and travels a length L along 
path 1 before being reflected by a mirror; half of that returning wave is reflected by the half-
silvered mirror and reaches the screen. In the meantime, half of the original beam is reflected by 
the half-silvered mirror and travels down the other arm of the interferometer for a length L along 
path 2, before being reflected by a mirror; half of that returning wave is transmitted by the half-
silvered mirror and reaches the screen. If the light waves from each path take different amounts of 
time before reaching the screen, they will be out of phase with each other, revealing a characteristic 
interference pattern on the screen. 
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To Michelson’s shock and lifelong disappointment, he never measured any interference 

pattern. His results were consistent with the race always being a tie, with Δt = 0, time and 

time again. This was a huge puzzle: light was clearly a wave in the ether; the Earth was 

clearly in motion through the ether; and Michelson had built the most sensitive instrument 

ever with which to try to measure the effects of the Earth’s motion through the ether. He 

considered himself a failure, right up to his death in 1927. (May we all win the Nobel Prize 

but remain unsatisfied...) 

3 Lorentz Contraction 

The “null result” which Michelson and Morley found time and time again bothered many 

of the leading European theorists, much as it bothered Michelson. Hendrik Lorentz, in 

particular, labored to make sense of the experimental result. He concluded that there must 

be a physical contraction of the entire apparatus along the direction of motion — and that 

this contraction should exactly offset what should have been a longer travel time for one of 

the light waves. If the arm of the interferometer that was moving directly into the ether wind 

became shortened, then the light waves that traveled along that path would have a shorter 

distance to travel, and hence they would arrive back at the starting point at the same time 

as the light waves in the other arm; the race would become a tie, and no interference fringes 

should be observed. 

The main idea, which Lorentz first published in 1892 and to which he returned throughout 

the 1890s and early 1900s, was that the physical material making up the apparatus actually 

shrunk (along the direction of motion) due to the resistance of the ether. Lorentz cautiously 

noted in his papers and in correspondence from the time that it was “not inconceivable,” 

and “not far-fetched to suppose” such a physical deformation due to the ether.11 

For one thing, the effect would be small — remember, Lorentz was trying to account for 

a second-order effect, proportional to (v/c)2 . To get an estimate for the expected size of such 

an effect, Lorentz approximated v (for the Earth’s motion through the ether) based on the 

Earth’s speed through the Solar System as it orbits the Sun: v ' 2πr/T ∼ 1011 m/(107 sec) = 

104 m/sec. Given the speed of light c = 3 × 108 m/sec, this yielded � �2v ∼ 10−8 , (22) 
c 

meaning that the effect would be about one part in a hundred million! 

11See, e.g., Darrigol, Electrodynamics from Ampeère to Einstein, 327-28. The Irish mathematical physicist 
George F. FitzGerald had made a similar suggestion in 1889, though Lorentz appears not to have known 
about FitzGerald’s short paper at the time. 
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Moreover, Lorentz reasoned by analogy that one could see all kinds of physical defor-

mations when bodies traveled through viscous, resistive media, such as a beach ball being 

dragged at high speed under water: the beach ball would become squeezed along the direc-

tion of motion. If the ether was a physical, elastic medium, then hydrodynamical analogies 

like this should hold — leading to an expectation that the arm of the interferometer really 

should become shorter along the direction of motion. 

Lorentz therefore suggested his hypothesis of length contraction: perhaps the length of 

objects shrunk by a small amount along their directions of motion through the ether, to be 

L0 = 
L
, (23)

γ 

where γ was the factor defined in Eq. (19). In that case, then the time for the first swimmer’s 

lap would be adjusted. Instead of tABA of Eq. (15), her return-trip time would be 

2L0 0 γ2t = ABA c� � 
2 L 

γ2 = 
c γ (24) 
2L 

= γ 
c 

= tACA, 

and hence Δt = 0 — the race would be a tie, after all, and no interference fringes would be 

detected within Michelson’s interferometer. 

Moreover, as we saw earlier, Lorentz had already figured out from his mathematical 

analysis that in order to retain the proper mathematical form for the wave equation for light, 

he would need to change both his spatial coordinates and his time coordinate, to introduce 

“local time.” In place of the usual Galilean transformation of Eq. (10), Lorentz found what 

we now call the “Lorentz transformations”: 

x 0 = γ(x + vt),� � vx 
t0 = γ t + , 

c2 (25)
0 y = y, 
0 z = z, 

for motion along the x direction at speed v. By making both x0 and t0 for the moving frame 

involve the rest frame’s coordinates x and t, Lorentz could keep the form of the wave equation 

unchanged: � � 
∂2 1 ∂2 

0− E0(t , x 0) = 0, (26)
∂x02 c2 ∂t02 
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and likewise for B0(t0, x0). In both reference frames — on the moving Earth and with respect 

to the stationary ether — light would simply move as a wave of speed c with respect to the 
12ether. 

Thus Lorentz addressed two puzzles — mathematical and experimental — regarding the 

electrodynamics of moving bodies. Based on the idea of the ether as a physical, elastic, 

resistive medium, he concluded that there should arise a physical contraction of material 

along the direction of motion through the ether, which would be accommodated by adopting 

a new coordinate transformation between the frames of reference. With these postulates, 

the null result of the Michelson-Morley experiment could be explained: one arm of the 

interferometer shrank by exactly the right amount to cancel out the time delay in travel 

times for the two light waves. 

More generally, Lorentz’s approach was to postulate a physical force to explain things like 

different clock rates and measured lengths for observers moving through the ether. That is, 

he began with dynamics (the study of forces) in order to account for kinematics (the motion 

of objects through space and time). 

An unknown patent clerk working in Bern, Switzerland — far away from the main centers 

of physics at the time — re-derived the Lorentz transformation rules for x0 and t0 in 1905, but 

from a wholly different set of starting assumptions. As we will see in the next lecture, to the 

young Albert Einstein, the challenge of “the electrodynamics of moving bodies” suggested 

quite different types of responses. 

12See, e.g., Darrigol, Electrodynamics from Ampère to Einstein, 327-28; and Miller, Albert Einstein’s 
Special Theory of Relativity, 18-37. 
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