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Introduction 

Albert Einstein submitted his paper, “On the electrodynamics of moving bodies,” to the 

Annalen der Physik in June 1905; this paper laid the groundwork for what would become 

known as the special theory of relativity.1 Soon after completing the paper, Einstein wrote 

to his friend Conrad Habicht, a fellow member of his informal “Olympia Academy”: “a 

consequence of the work on electrodynamics has suddenly occurred to me, namely, that the 

principle of relativity in conjunction with Maxwell’s fundamental equations requires that the 

mass of a body is a direct measure of its energy content — that light transfers mass. [...] 

This thought is both amusing and attractive; but whether or not the good Lord laughs at me 

concerning this notion and has led me around by the nose — that I cannot know.”2 Einstein 

submitted a short paper to the Annalen der Physik in September 1905 with the title, “Does 

the inertia of a body depend upon its energy content?”3 It was in this short paper — a mere 

3 pages! — that Einstein derived the now-famous equation, E = mc2 . 

Einstein returned many times over the years to this equation, offering a variety of simpler 

ways to re-derive the result. In these short notes we will consider one of his later derivations. 

We will also briefly consider the concept of “relativistic momentum,” in terms of which we 

find the more general expression of Einstein’s equation, E = γmc2 , where γ is the usual p
factor we have encountered several times: γ ≡ 1/ 1 − (v/c)2 . 

1A. Einstein, “Zur Elektrodynamik bewegter Körper,” Annalen der Physik 17 (1905): 891-921. 
An English translation is available in John Stachel, ed., Einstein’s Miraculous Year: Five Papers 
that Changed the Face of Physics (Princeton: Princeton University Press, 2005 [1998]), 123-160. 

2Albert Einstein to Conrad Habicht, undated (ca. summer 1905), as translated and quoted in 
Arthur I. Miller, Albert Einstein’s Special Theory of Relativity (Reading, MA: Addison-Wesley, 
1981), p. 353. 

3A. Einstein “Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?,” Annalen der 
Physik 18 (1905): 639-41. An English translation is available in Stachel, Einstein’s Miraculous 
Year, 161-164. 
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Figure 1: A box of mass M and length L in which a burst of radiation, carrying energy E, travels 
from left to right. 

The Energy of a Moving Box 

Consider a box of mass M and length L floating in space and at rest with respect to us. 

Suddenly a burst of radiation, with energy E, is emitted from the left end of the box and 

travels toward the right, as in Fig. 1. From Maxwell’s equations, we know that this radiation 

carries momentum of magnitude |pradiation| = E/c, where, as usual, c is the speed of light. 

Prior to the release of the radiation the system had zero total momentum, and there are no 

external forces acting on the box, so even after the release of the radiation the system’s total 

momentum must remain zero. This means that the box must recoil in the opposite direction 

from the direction of motion of the radiation, to preserve ptotal = pbox + pradiation = 0. The 

velocity of the box’s recoil v is fixed by the conservation of momentum. If we consider a very 

massive box we can expect the recoil velocity to remain small, |v| � c. Requiring ptotal = 0 

then yields 
E E 

Mv + x̂ = 0 =⇒ v = − x̂ . (1) 
c Mc 

(Here x̂ is a unit vector pointing along the x axis.) If the radiation travels in the +x̂ direction, 

then the box will recoil in the −x̂ direction, with speed v = |v| = E/(Mc). After the light 

travels the length of the box it will hit the other end of the box. Since the radiation carries 

momentum |pradiation| = E/c, it will deliver an impulse to the right side of the box that will 

halt the box’s recoil, bringing the box to rest again. 

We have assumed v � c, so we can neglect the motion of the box when calculating the 

duration Δt, the time-of-flight for the radiation to cross the length of the box. In that limit, 

Δt = L/c. Between the emission and absorption of the radiation within the box, the box 

will have moved a distance Δx to the left, as in Fig. 2: � �� � 
E L EL 

Δx = vΔt = − = − , (2)
Mc c Mc2 

where the minus sign reminds us that the box has moved in the −x̂ direction during its 

recoil motion. 

Throughout this entire process, the box has been subject to no external forces. Hence the 
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Figure 2: After the radiation traverses the length of the box it will strike the right side of the box, 
bringing the box’s recoil motion to a halt. During the time that the radiation travels within the 
box, the box moves a distance Δx to the left. 

center of mass of the system has not moved. In general, the center of mass for a collection 

of N objects is given by 
NX 

mi (ri − R) = 0 , (3) 
i=1 

where R is the position of the center of mass, and the N objects have masses mi and positions 

ri. We may adopt coordinates such that initially R = 0, that is, the center of mass is initially 

located at the origin. In the absence of external forces, dR/dt = 0. In our case, the massive 

box has clearly changed its position over time, recoiling a distance Δx to the left. In order 

for the system’s center of mass to remain unchanged, therefore, some mass equivalent must 

have traveled with the radiation the distance L from the left side of the box to the right. 

Let us call this mass equivalent m. Then Eq. (3) becomes 

M 
mL + MΔx = 0 =⇒ m = − Δx . (4)

L 

In other words, the mass equivalent m associated with the radiation that moved a length L 

to the right has compensated for the motion of the massive box M a distance Δx to the left. 

Combining Eqs. (2) and (4), we find � �� � 
M EL E 

m = − − = , (5)
L Mc2 c2 

or, more famously, 

E = mc 2 . (6) 

We arrived at Eq. (6) by neglecting quantities of order (v/c)2 . If we had calculated the effects 

to arbitrary order in (v/c), we would have found the result Einstein originally derived: 

E = γmc2 , (7) 
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with 
1 

γ ≡ q . (8)� �2 
1 − v 

c 

Relativistic Momentum 

In our class discussion of Hermann Minkowski’s geometrical interpretation of Einstein’s 1905 

work on the electrodynamics of moving bodies, we will see that Minkowski found an invariant 

quantity on which observers in any inertial reference frame will agree, even though (as 

Einstein had demonstrated) the observers will disagree about measurements of length and 

of time. For finite durations Δt and displacements Δx, Minkowski showed that the quantity 

s2 remains invariant across inertial reference frames: 

s 2 ≡ c 2 (Δt)2 − (Δx)2 

2 2 
(9) 

= c 2 (Δt0) − (Δx 0) . 

The quantity s is often called the “spacetime interval.” We may define the proper time Δτ 

for an object as the time measured by a clock that is moving with that object: 

cΔτ ≡ s . (10) 

For a clock sitting at rest, Δx = 0 and the proper time simply equals the coordinate time 

measured in that object’s reference frame, Δτ = Δt. However, since any inertial observer 

will agree on the spacetime interval s2 — and since the speed of light c is a universal constant, 

on which all inertial observers will also agree — any inertial observer will also agree on the 

proper time Δτ , even when they disagree about coordinate-dependent durations Δt. 

Just as we may consider an infinitesimal displacement in time or space, dt or dx, we may 

also consider an infinitesimal spacetime interval: 

ds2 = c 2dt2 − dx 2 " #� �2
1 dx 

= c 2dt2 1 − 
2c dt � � ��

2 (11)v 
= c 2dt2 1 − 

c2 

2c 
= dt2 ,

γ2 

where I have used v = dx/dt, v = |v|, and the definition of γ in Eq. (8). Using Eqs. (10) 

and (11), we may find an expression relating the infinitesimal proper time dτ = ds/c to the 

coordinate time dt in a given inertial reference frame: 

dt 
= γ , (12)

dτ 
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which is just another way of expressing the time dilation of one observer’s measurement of 

the rate at which time passes on a moving clock. 

In Newtonian mechanics (that is, when we ignore special relativity), we define the mo-

mentum of an object of mass m to be 

dx 
pnonrel ≡ m . (13)

dt 
Since all inertial observers will agree on the proper time associated with a moving object, 

even if they disagree on the coordinate times associated with various reference frames, we 

may generalize Eq. (13) and write the relativistic momentum for an object of mass m as 

dx 
prel ≡ m 

dτ 
dx dt (14)

= m 
dt dτ 

= γmv , 

upon using v = dx/dt and Eq. (12). 

Now we can see that the general expression in Eq. (7), E = γmc2 , is equivalent to taking 

into account both the “rest energy” of an object — a nonzero quantity for any massive 

object, even if the object is sitting at rest in a given reference frame — as well as its kinetic 

energy, due to its motion. Let us posit that 

2 4 2E2 = m c + |prel|2 c . (15) 

(As a quick check, note that light has vanishing rest mass, m = 0, and hence Eq. (15) implies 

that E = |pradiation|c, which is consistent with Maxwell’s equations and was central to the 

argument that Einstein used in his discussion of the momentum carried by the radiation 

within the box, which we considered above.) Upon using Eq. (14), we find 

E2 = m 2 c 4 + γ2 m 2 v 2 c 2 � � 
2 4 = m c 1 + γ2 v

2 

c2 � � 
v2/c2 

= m 2 c 4 1 + (16)
[1 − (v2/c2)]� �

2 4 2 2m c v v 
= 1 − + 
[1 − (v2/c2)] c2 c2 

= γ2 2 4 m c , 
or 

E = γmc2 . (17) 

An object with mass m at rest (with v = 0) will have a “rest energy” E = mc2 . An object 

with mass m that is moving with some velocity v will have a relativistic momentum p = γmv 

and energy E = γmc2 . 
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