CLASS ELEVEN: Improving the Talent Base – New Education and Training Models

> William B. Bonvillian MIT – STS.081/17.395 Innovation Systems for Science, Technology, Mfg.,Energy and Health

### Norman R. Augustine, Is America Falling Off the Flat Earth? (NAS 2007)

**U.S. Children Are Not Prepared for 21st Century** <u>Jobs:</u>

- According to a recent survey, 86% of US voters believe that the United States must increase the number of workers with a background in science and mathematics or America's ability to compete in the global economy will be diminished.
- About <u>one-third of the 4th graders and one-fifth of the 8th graders lacked the competence to perform even basic mathematical computations</u>. Without these basic skills, these students will have trouble succeeding in the future American workforce.

# $Con'_{f}$ Augustine,

3

66

66

<u>US Children Being Taught</u> by Teachers Not Trained in <u>Math And Science</u>

In 1999, <u>68% of US 8th-grade</u> students received instruction from a mathematics teacher who did not hold a degree or certification in mathematics.

In 2000, <u>93% of students in</u> grades 5–9 were taught physical science by a teacher lacking a major or certification in the physical sciences (chemistry, geology, general science, or physics)

#### Augustine, con't

#### **U.S. children Are Falling Behind Their Foreign** <u>Counterparts</u>

We can see the results of our <u>de-emphasis on math and</u> science education in our country and it has long-term, <u>global implications</u>.

4

- "
  - In 1995 (the most recent data available), <u>US 12th graders</u> performed below the international average for 21 countries on a test of general knowledge in mathematics and science.

<sup>66</sup> US <u>15-year-olds ranked 24th out of 40 countries that</u> <u>participated in a 2003 Program for International Student</u> <u>Assessment (PISA)</u> examination, which assessed students' ability to apply mathematical concepts to realworld problems. In <u>2006, American teenagers ranked 21<sup>st</sup></u> <u>in science and 25<sup>th</sup> in math among 30 industrialized nations.</u>

#### Augustine, con't

The US Secondary Educational System is not Preparing our Students for Math, Science or Engineering Majors and too Few Students end up majoring in disciplines for high-tech careers.

- Faltering secondary education system: fewer than 15% of high school graduates have sufficient mathematics and science credentials to even begin pursuing an engineering degree, and 40% of four-year college students end up taking at least one remedial course.
- To keep up with a more competitive global environment, <u>need more of our students majoring in</u> <u>math, science and engineering</u>, otherwise Americans will be left behind. Yet, we are seeing the reverse trend.

# Augustine, con't

Almost twice as many bachelor's degrees were awarded in physics the year before Sputnik, deemed a time of dangerous educational neglect, as 2007. And, the U.S. share of the global output of doctorates in science and engineering declined from 52% in 1986 to 22% in 2003.

6

<sup>44</sup> The United States ranks <u>17th among developed</u> nations in the proportion of college students receiving degrees in science or engineering, a fall from third place three decades ago. It ranks 26th in the proportion receiving undergraduate degrees in mathematics.

#### 66

66

7

Augustine, con't

Some 34% of doctoral degrees in natural sciences (including the physical, biological, earth, ocean, and atmospheric sciences) and <u>56% of</u> engineering PhDs in the United States are awarded to foreign-born students.

Yet, we are moving in the wrong direction. <u>About one-</u> third of US students intending to major in engineering switch majors before graduating. As a result, 38% of PhDs in the US science and technology workforce were foreign-born, as of 2000. **Prof. Paul M. Romer** (Stanford, NYU), "Should the Government Subsidize Supply or Demand in the Market for Scientists and Engineers?" Nat'l Bur. Of Eco. Res., Working Paper 7723 (6/2000)

- The Issue: Federal Gov't subsidizes private sector *demand* (esp. tax incentives, R&D tax credit) for scientist/engineer talent
- Doesn't ask whether the *supply response* allows these subsidies to work
- Reality: Institutional arrangements in Univ's limit this supply response
- So we need. new incentive system

#### Romer, Con't–Underlying Thesis:

1) In the 20<sup>th</sup> Century, "<u>rapid technological</u> <u>progress in the US drove the unprecedented</u> <u>growth</u> in output and standards of living"

- 2) "fostered by publicly supported system of education that provided the essential input into the process of discovery and innovation <u>a steady</u> flow of people trained in scientific method and in the state of the art in their area of specialization"
  YET: Public Policy has ignored the structure of
  - our institutions of higher ed
- SO: gov't programs to speed up innovation rate is thwarted by that structure
- Gov t programs focused on the DEMAND (R&D tax credit) side not the SUPPLY side for this talent- wrong direction - inefficient

# <sup>10</sup> Romer - Thesis, Con't:

- Speeding up growth is the only way we'll be able to cope with the demographics revolution that is upon us – need at least .5% higher growth rate
- Conservative estimate of of the add'l <u>return on</u> <u>R&D spending: 25%</u> [this is low – over 50%]
- So increase R&D spending by 2% of GDP and, *voila!* We' re at +.5% GDP growth!
- BUT: to speed up growth "it is not enough to increase *spending* on on R&D"
- Instead have to "increase the *total quantity of inputs* that go into the process of R&D"
- That Means: TALENT, the big input

#### Romer - Thesis, Con't:

A "basic insight of economics is that for the economy as a whole, <u>things have to add up</u>"

- "If the total number of scientists and engineers is fixed" then you limit your biggest input into innovation and thus growth – (basic idea behind Romer's Prospector Theory)
- And: US is not expanding its supply of science and engineering talent –went way up from .3% to .8% of labor force (GI bill, Sputnik) but frozen since 60's - growth drag (and wait until baby boom retires, when it will get worse)
- SO: despite increase of gov't incentives on tax side to corps. (ie, demand subsidy), this is not resulting in growth of key input to innovation talent

#### Romer, Con't – The Undergrad Supply <sup>12</sup> Problem in Univ's:

- If demand side incentives aren't working, <u>what</u> has broken down on the talent supply side?
- Univ. measures itself by ability to select top-SAT scoring students not pressured to indicate what happens to them (ie, no salary info)
- Traditional liberal arts <u>univ. faces little pressure to</u> respond to shift in skills needs
- Univ. has fixed investment in faculty teaching outside sciences
- So: Internal pressure to maintain the relative size of dept's
- Univ Solution <u>Make it more difficult for students</u> to get science degrees

#### Romer – Undergrad Problem, Con't :

**Science faculty is happy to keep teaching loads down by** <u>keeping</u> "professional standards" high—ie, lower grades

13

"

- **66** Other <u>non-science dept's</u> increase their attractiveness by <u>grade inflation</u>
- <sup>66</sup> This is what is happening: <u>40-50% of students entering</u> <u>undergrad science/engineering programs shift to other</u> <u>areas</u>
- **Grade inflation is real in non-science, has not happened in sciences/engineering**
- 1998 study: 80%+ A's or B's for History/English vs. 54% Math –
- **Supply problem for undergrads affects grad student** <u>levels</u>
  - US <u>industry tries to make shortfall up with foreign born</u> <u>science talent</u> – starting to dominate US science and engineering PhD programs

# Romer – The Univ PhD Problem:

- **In science <u>PhD programs: supply growth, but trained for</u> <u>academia</u> (in basic not applied research), yet there the number of faculty positions is frozen**
- **Result of zero academic demand: PhD training now 8 years,** <u>and "post doc" invented to allow huge surplus to hang</u> <u>around univ's (medieval: apprentices for masters)</u>
- **Result: science <u>PhD frustration</u>**
- **Gamer's picture:** "<u>undergrad institutions that are a critical</u> <u>bottleneck in the training for scientists and engineers</u>"
- **AND <u>"graduate schools that produce people trained only</u> <u>for employment in academic institutions as a side product of</u> <u>producing basic research results"</u>**

**"<u>The challenge</u> in this area is not to increase the total numbers of PhD recipients but to <u>increase the fraction of them that can put their skills to work in private sector</u> <b>R&D**"

# Romer, Con't – Supply Goals:

Romer doesn't wring his hands like a typical economist "dark science" type, he actually proposes interesting fixes!

- **Goal:** Increase the fraction of 24 year old citizens with <u>degrees in sci/engineering</u> from 5.4% of 24 year olds to 10% by 2020
- **Goal:** Innovation in grad training programs in sci/engineering training for private sector R&D
- **Goal:** redress the imbalance in <u>federal incentives</u> <u>for demand AND supply</u> and get the supply incentives right this time - \$1b

<sup>16</sup> Fix #1: training grants to under grad univ's that increase the numbers of students receiving sci/engineering degrees

Fix #2: objective achievementbased tests that show undergrad mastery of sci/engineering areas (break grading system)

Fix #3: new class of portable fellowships that pay \$20,000 for 3 years of grad training in sci/engineering – and fund a new type of degree that reflects this program

#### Richard B. Freeman, Does Globalization of the Sci/Eng. Workforce Threaten U.S. Economic Leadership? (6/05)

US - 5% of world pop., but 1/3 of world sci/engineering researchers

- US comparative advantage leadership in sci/tech
- US share of world S&E workforce declining
  - China: no PhD' s in 1975; in '03, 13,000
  - China will produce more PhD's than US by 2010
    - Foreign born share of US Sci/Eng PhD' s: 42%
- US has adequate supply of Sci/Eng talent only because of sci/eng immigrants from abroad

#### Freeman, Con't

Offshoring R&D - Major high tech firms are locating new R&D facilities in China and India

18

As nos. of sci/eng's working in foreign countries increases, US comparative advantage in high tech sectors will decline

What is good for other parts of the world is not inevitably good for the US

# Freeman, summary

"

19

This paper develops four propositions that show that <u>changes in the global job</u> <u>market for science and engineering</u> (S&E) workers are eroding US dominance in S&E, which diminishes <u>comparative advantage in high tech</u> <u>production</u> and creates problems for American industry and workers:

- (1) The U.S. share of the world's science and engineering graduates is declining rapidly as European and Asian universities, particularly from China, have increased S&E degrees while US degree production has stagnated.
- <sup>66</sup> 2) The job market has worsened for young workers in S&E fields relative to many other high-level occupations, which discourages US students from going on in S&E, but which still has sufficient rewards to attract large immigrant flows, particularly from developing countries.

Inn

20

"

3) Populous low income countries such as China and India can compete with the US in high tech by having many S&E specialists although those workers are a small proportion of their work forces. This threatens to undo the "North-South" pattern of trade in which advanced countries dominate high tech while developing countries specialize in less skilled manufacturing.

4) <u>Diminished comparative advantage in high-</u> tech will create a long period of adjustment for <u>US workers</u>, of which the off-shoring of IT jobs to India, growth of high-tech production in China, and multinational R&D facilities in developing countries, are harbingers.

<sup>ff</sup> To ease the adjustment to a less dominant position in science and engineering, the US will have to develop new labor market and <u>R&D policies</u> that build on existing strengths and develop new ways of benefitting from scientific and technological advances in other countries. Claudia Goldin & Lawrence Katz (Harvard economists), "The Future of Inequality: (Milken Inst. Review July 2009)

Gap between wages of educated and less well educated workers growing since 1980

- This expanding wage inequality has characterized US since that time
- But: wage inequality narrowed from 1910 into the 1950's then was stable until the 1980's
- Why? Race between technological change and educated workforce

#### Goldin and Katz, con't

Technology advance - key to growth

- Requires ever-higher educational attainment
- Have to be well- educated to realize the gains of technology advance
- Ebb and flow of wage inequality is all about education and technology
- US economy grew rapidly in post-WW2-1973 period
  - 1947-1973: real income grew 2.6% all quintiles
  - 1973-2005: bottom fifth of real income: no growth;
    Top fifth 1.6% annual growth; top 5% 2% annual growth
  - In that 1973-2005 period: wage inequality tied to rising differences between wages of highly educated and less educated

#### Goldin & Katz, con't

Average years of schooling increased rapidly and continuously for Americans born from 1875 to 1950

"

- US led the world in universal education in the first half of the 20th century
  - <sup>66</sup> Free compulsory education increased from grade school to high school; continued with mass higher education a US first
- Efforts to reduce wage inequality depend on increasing the supply of educated workers
- <sup>44</sup> US economy grew rapidly through technology advance, with wages growing in tandem to growing education attainment 1910 through 1973
  - <sup>16</sup> US led way in mass secondary then mass higher ed
  - Educational attainment increased almost 1 year per decade from 1875 to 1950
- But then attainment stagnated in 1970s plateau-ed
  - Sharp slowdown in rise in high school and college grad

#### Goldin & Katz, con't

College grads continue to command a wage premium strong growth since 1950

24

Relative supply of college-educated workers increased at annual rate of 3.8% from 1960-80, but at just 2% from 1980-2005

The soaring wage premium for college-educated workers is driven by the supply shift

Starting 1973 (and esp. 1980s) growing wage inequality
 parallels two factors: rising technology advance and stagnating ed attainment for bottom 3/5' s of wage earners

Want to restore widespread wage mobility? Revitalize education attainment - and spread gains of tech advance through society again, not just top tier

Prof. <u>William J. Baumol, N</u>YU, 25 **"Education for Innovation: Entrepreneurial Breakthroughs** vs. Corporate Incremental Improvements," Nat'l Bur. Eco. **Research, Working Paper (April** 30 2004)

- hesis:
- Breakthrough innovation comes from independent inventors and entrepreneurs
- Large firms concentrate on incremental innovation
  - Education for mastery of of science knowledge aids incremental advance not breakthroughs

#### Baumol - Thesis, Con't:

Standard science education may impede breakthrough thinking and imagination

- Large firm R&D requires scientists & engineers educated in extant info and analytic methods
- Successful inventors and entrepreneurs often lack such standard preparation
- Procedures for incremental learning seem to work
   but we don't know how to educate for
   innovation

27

<sup>66</sup> Proctor & Gamble – 7500 scientists, 1250 PhD's, more than the Harvard, Stanford, MIT faculties, 22 research centers, 12 countries --- VERSES:
<sup>66</sup> Watt, Eli Whitney, Fulton, Morse, Edison, the Wright Bros.,

Wozniak, Jobs, Gates & Dell – no college degrees, little sci. training

*Education where you master the received body of knowledge may be a hindrance to invention, innovation* 

*Intrast* Nes QG. Baumol. mall

28

Progress requires both breakthrough ideas and protracted follow-up process of cumulative\_incremental improvement of breakthroughs

- Industrial labs ill-suited to breakthroughs but well-designed for the incremental tasks
- Sharp differentiation between economic contributions of <u>entrepreneurs/inventors</u> <u>contributing novel technologies and</u> <u>large firms providing improvements</u>
- <sup>66</sup> <u>70% of US R&D (ie, D) is private</u> <u>sector, and that means large firms and</u> <u>thus incremental</u>
- Most <u>revolutionary new ideas of last</u> 200 years provided by independent entrepreneurs – see SBA surveys

# Baumol, Con't - 7 Hypotheses:

1) Disproportinate share of <u>breakthroughs from</u> <u>independent inventors/entrepreneurs</u>, <u>large firms do</u> <u>incremental</u>

- 2) Large proportion of <u>startups involve former ee's of</u> <u>large firms</u> – leave because large firm unreceptive to novel ideas, or little reward for novel ideas
- 3) <u>Training for mastery of available sci/tech</u> data is of great value for innovation and growth; but <u>education</u> for original thinking and imagination also crucial to growth

#### Baumol - 7 Hypotheses, Con't:

- 4) <u>Education</u> for incremental advance different from education for novel advance
- 5) R&D divisions of <u>large firms require personnel</u> with training in extant sci/tech info and extant analytical methods; this kind of education may hinder the independent entrepreneur/ inventor
- 6) <u>Incremental improvement may require far more</u> <u>mastery of demanding sci/tech info than original</u> <u>novel idea</u>
  - Example think of the airplane the Wright Bros. built vs. what a Boeing 787 is like

#### Baumol – 7 Hypotheses, Con't:

While both educational approaches may be very different, neither is inferior to the other – need both – both essential for innovation and growth
 Problem:

- We seem to have down education for acquiring extant sci/tech info BUT:
- How do you educate for original and novel idea generation?
  - American Education seems to be less demanding and rigid than other industrialized countries, hence some innovation success? but what are the key features?



 Opening Q's:
 Will MOOCs be a disruptive innovation and disrupt higher ed substituting a new model?

Will higher ed respond with a 'Blended Model' or just ignore this?

33

" Univ.'s are deep problem for this disruptive innovation: Universities are Legacy Sectors " **Resist disruptive change** " Conduct almost no R&D on education – innovation averse " Perverse pricing issue " Very decentralized – hard to spread learning collective action problem



#### <u>Non-Profit</u>-

#### https://www.edx.org/how-it-works

- First course: 200,000 students world wide; most were shoppers – but 8% completed for certificate –
  - more students than at MIT
  - edX numbers 10 million of students worldwide
  - Many more courses now so fewer per course with some training exceptions
  - Non-profit so participants control their content and student data
  - Courses are free
    - Charge for certificates

Students cooperate, assist each other, organize online discussion groups – optimal education

- 60+ universities in consortium MIT, Harvard, Berkeley, Univ. of Texas, Georgetown, UWash, Stanford, 12 Int'l Univ.'s., etc.–
- the univ's provide courses, edX is the "theatre" – technical support, course distribution
- GOPEN SOURCE technology platform
  All platform technology posted and open
  - An planor in technology posted and open
    - anyone can create a course through mooc.org
- But what is the business model?
  - Course Development very expensive MIT or edX may have to add a "Pixar"

#### For Profit:

**COURSERA** – former Stanford faculty – VC funding - 62 universities/colleges offer at least 1 course

-- Former Stanford faculty, VC funding --Udacity/GaTech <u>ex:</u> - new Master's in computer science with GaTech with funding from AT&T - \$134 per credit vs. normal \$472 in state and \$1139 out of state – income split 60/40 between

--Univ. of Phoenix – enrollment in 2012 – 308,000

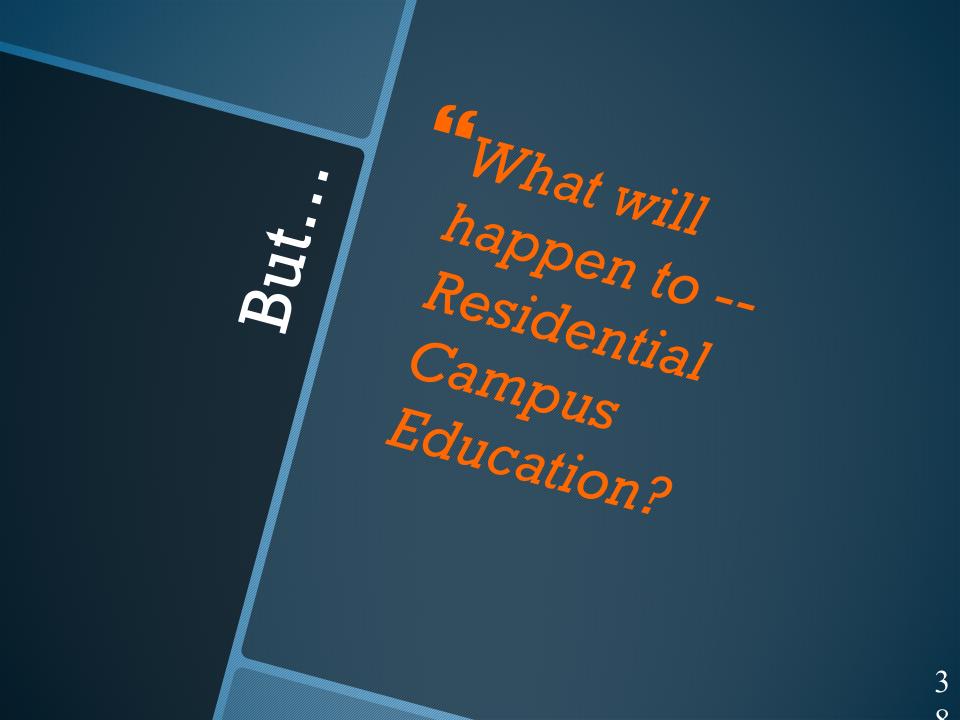
-- Kaplan - enrollment in 2012 - 78,000

ler

-- Blackboard, publishers entering the field **KHANACADEMY** 

College prep STEM courses –Non-Profit

## Politicians – think this is IT "new magic"




<u>Right:</u> We can get rid of pesky leftwing universities with a low cost for-profit model!

Left: We can get rid of outrageous tuition – drive tuition through the floor - make higher education low cost, and more accessible than ever before!

States passing laws requiring \$10,000 BAs

California – requiring state univ's to give credit where not enough student seats



 Online learning can support an education shift – new tool:
 Tool for visualization, representation, reinforcement and <u>assessment</u>.

Using <u>feedback loops</u> and <u>repetition tied to continuous</u> <u>assessment</u>, online can convey information and content, reinforcing both.

mme

hat

<sup>66</sup> Online will have features better than lectures and could force interactive classrooms and restructuring of face-to-face learning. han

66

Vital education components remain face-to-face: 66 development of oral expression, presentation and advocacy skills and organizing expertise. " Written analysis currently requires human assessment except for straightforward assignments. Research, central to learningby-doing in science, remains face-to-face, although online features can enhance it.

40

#### What Remains Face-to-Face:

- The <u>social features of exchanges in classroom and seminar</u> build student involvement in learning
- interactive online features still can't fully substitute for face-to-face intensity.
- Learning requires human scaffolding –
   for discourse.
  - for argumentation,
  - for mentoring,
  - for making the case,
  - for research,
  - for making the conceptual leap.



It will be the "human-machine symbiosis" " Machines will do what they are good at – content, information " Teachers will do what only they can do – mentoring, directing discussion, pushing expression of expertise " Blended learning needs to prevail Will it?

BUT: The Technology will Change

Online technology's interactive social and evaluation *features will evolve* 

Can build <u>online discussion groups</u>
 Still: not personal competition, intensity

"

- Machine writing evaluation getting better at edX– best: word use, rubrics, core concepts – same grade a teacher grader 85% of the time
- Research can be complemented by online <u>simulation and modeling = HANDS ON LEARNING</u> <u>TECHNOLOGY</u>

<u>i-Lab</u> – access to actual adv'd lab

DOD: join personal tutors and MOOCs

Boundaries between online and face-to-face will shift if we join it with the learning science.

### Will Online Ed Disrupt Universities?

- Will universities go the way of publishers, newpapers, broadcast journalism?
- If universities disappear: no course content
- Universities are research engines as well as teaching and learning centers
- In a knowledge economy, no substitute for universities –they <u>are</u> the knowledge economy
- The university has become central to the way we organize an innovative society
- No real replacement -
- Students need learning mentors univ's last if they upgrade face-to-face education

The Online Revolution is Coming –> Need to Figure out this New Tool – can't ignore it...

*Need to bring Learning Science to Online Ed* 

- MOOCs have been led by Computer Geeks not learning experts
- But there is a parallel revolution now in learning
- <sup>44</sup> Undergraduates face learning challenges in
- *conceptual understanding,*
- *visual representation* and

*problem* solving

Instructional strategies emerging for each

### Worldwide Online Education Revolution

#### Worldwide availability of courses

- No limits in education reach unprecedented world learning revolution at hand
- Can reach low income learners everywhere
- Much <u>broader impact</u> worldwide
- def edX collaboration models San Jose State,
   community colleges + edX content with
   classroom context
- <sup>44</sup> Univ. much larger than the way it now sees itself;
   <sup>44</sup> MIT doesn't have to be 10,000 students on campus between ages of 18-28

#### **Credentials**/certificates/degrees

Business model: only works for online if offering certificates or degrees

- Issues in accepting MOOCs for course credit – measures content acquisition but not expertise presentation or written expression
- Credentials/certificates online <u>content is</u> <u>still worthwhile</u> – may want to measure and award these
- •• Employers may be interested in "<u>stacks"</u> of online credentials
- U.S. Community Colleges: already 40% certificates for professional skills

"

Perhaps <u>students come to college</u> with a year of intro courses completed on line?

But freshman year – important socialization

College costs – univ's have the same fixed plant – grow utilization - quarterly system, attend 3 quarters?

Make college 3 years? Increase Throughput

Admissions – perhaps schools accept students based on performance in completing the first year of course?

# Lifelong Learning may be best app:

After you have the oral and written expression skills, online courses may fill a great need – a new way to update and improve your content knowledge and skills

"

<u>ern</u>

Role in

adult learning is increasingly content and information based

Online may be <u>critical for adult</u> <u>learning</u> – for skills updates

When you <u>apply to college do</u> you apply for lifelong content learning? 66

MOOCs – very <u>expensive up front to</u> <u>develop</u> quality courses with interactive features - but potentially disperse these costs over a much wider group of students;

The courses can be freely available, but if you want a <u>certificate</u>, <u>assessment</u> <u>needed and modest charge</u> – but at what level? - differential pricing?

Blockbuster courses, faculty – premium charge?

**How to charge for lifelong learning**?

- If one univ. develops a course, and another uses it in a <u>blended model</u>, what charge?
- 66
  - Are MOOCs copyrighted materials who owns?

-->Overall - very different business model for very different cost structure



Some universities as we know
them now may close
If lecture-based and no research

- If lecture-based and no research base
- Goline-only is not perfect, but it's going to be <u>pretty good</u>
- Univ's facing transformation reflect a new blended model – new faculty role
- ISSUE: two higher education systems – face-to-face and online?
- With online, how will higher ed shift in Open access to global knowledge? 51

66

"

Much to learn about learning
In the classroom,
In blended learning, and
In fully online environments
Key –

- How to optimize learning in each environment so each does what it does best
- *Then* coordinate the three rings of the circus
- Note: If meaningful learning analytics can be applied to growing online data mountains, we could fill in gaps in our understanding of learning science

# and Weis IIIII

The learning revolution (for the foreseeable future) will be *blended* " both online and face-to-face. " It's the human online symbiois 66 It's Deep Blue and Gary Kaparov " - the right <u>blend of students</u>, teachers and teams with online capabilities, all informed by advances in learning science -" This can be the enabler for a new generation of science learning. " Linking learning science to online will drive learning reforms in both

 physical and virtual spaces.
 *ISSUE: Will Univ's just launch a fw* MOOCs and ignee the real opportunity: Blended?



" Authors: Sarma, Willcox, Klopfer, Lippel " Four Key **Recommendations:** 1) integrate learning science from education with cognitive psychology and neuroscience research 66 2) optimally structured

2) optimally structured online courses/modules can be an important facilitator in higher ed

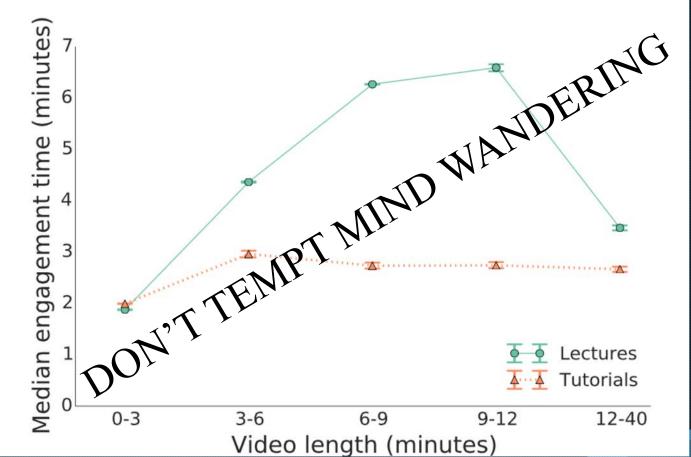
55

" 4 examples re: **Recommendations 1 and 2:** <sup>66</sup> Mind Wandering 66 Segment Learning into bite-sized pieces " Retrieval learning = study/test, vs. study/study 66 Spaced retrieval " Role of curiosity

4 Examples re: Recommendatons 1 and 2 (from Prof. Sanjay Sarma, Director of MITx): Mind Wandering is Natural

<u>and</u>

lind M


Singer, Jerome L. Daydreaming: An introduction to the experimental study of inner experience. New York: Random House, 1966.
Mason, Malia F., et al. "Wandering minds: the default network and stimulus-independent thought." Science 315.5810 (2007): 393-395.
Christoff, Kalina, Justin M. Ream, and

John DE Gabrieli. "Neural basis of spontaneous thought processes." *Cortex* 40.4 (2004): 623-630.

Baird, Benjamin, et al. "Inspired by distraction mind wandering facilitates creative incubation." *Psychological Science* (2012): 0956797612446024.

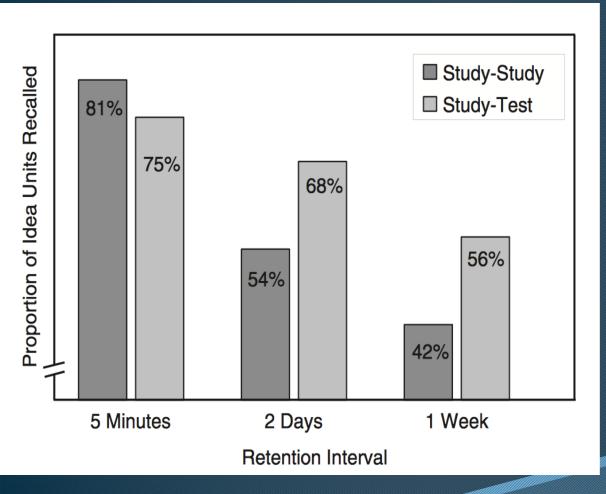
Slide courtesy of Sanjay Sarma. Used with permission.

#### -> Segment learning into bite-sized chunks --Lesson #1 for Learning



 Video length (minutes)

 Guo, Philip J., Juho Kim, and Rob Rubin. "How video production affects student


 engagement: An empirical study of mooc videos." *Proceedings of the first ACM conference* 

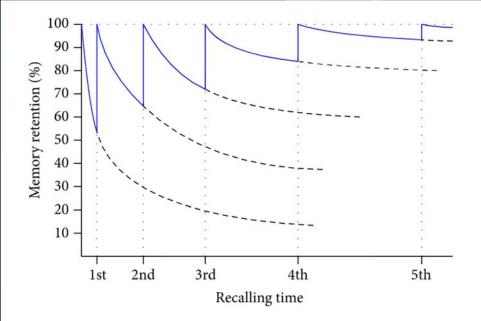
 on Learning @ scale conference. ACM, 2014.

 Image © Philip J. Guo, Juho Kim, and Rob Rubin. All rights reserved. This content is excluded from our Creative Commons license.

 For more information, see <a href="https://ocw.mit.edu/help/fag/latr-use/">https://ocw.mit.edu/help/fag/latr-use/</a>

#### Retrieval Learning Lesson #2 for Learning




Karpicke, Jeffrey D., and Henry L. Roediger. "The critical importance of retrieval for learning." *Science* 319.5865 (2008): 966-968.

Roediger, Henry L., and Jeffrey D. Karpicke. "The power of testing memory: Basic research and implications for educational practice." *Perspectives on Psychological Science* 1.3 (2006): 181-210.

Image © <u>AERA</u>. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

Slide courtesy of Sanjay Sarma. Used with permission.

#### Lesson #3 Curosity makes a difference -- Spaced Retrieval



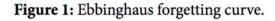
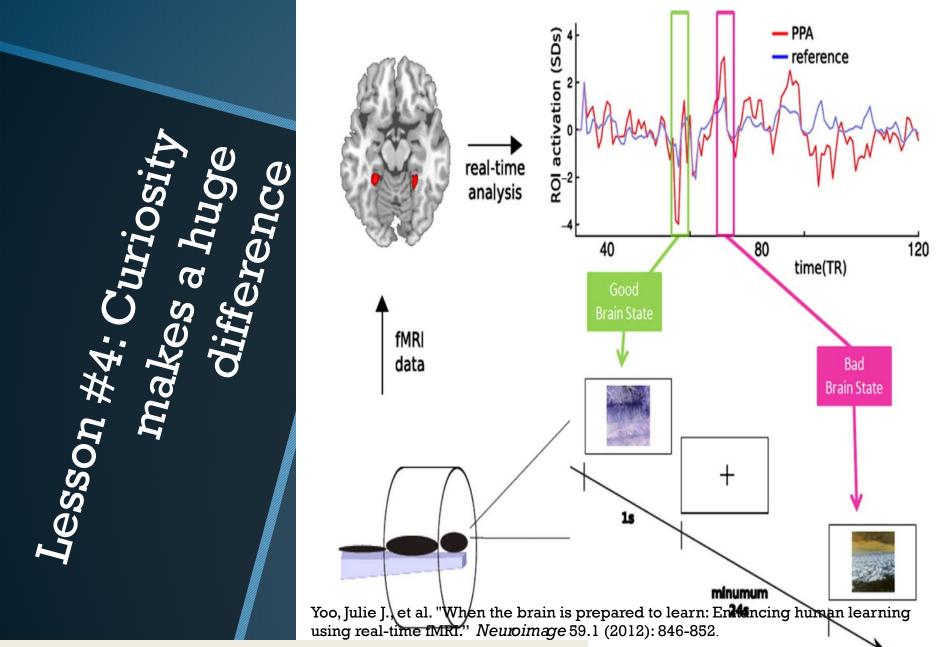




Image courtesy of <u>Yanhuang Jing et al</u>. Used under CC-BY.

https://courses.p2pu.org/en/groups/study ing-psychololgy-the-p2puway/content/task-21-the-ebbinghausforgetting-curve/

Image © <u>AERA</u>. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use</u>

Cepeda, Nicholas J., et al. "Distributed practice in verbal recall tasks: A review and quantitative synthesis." *Psychological bulletin* 132.3 (2006): 354. Slide courtesy of Sanjay Sarma. Used with permission.



Gruber, Matthias J., Bernard D. Gelman, and Charan Ranganath. "States of Curiosity Modulate Hippocampus-Dependent Learning via the Dopaminergic Circuit." *Neuron* 84.2 (2014): 486-496.

Image courtesy of Elsevier, Inc., <u>https://www.sciencedirect.com</u>. Used with permission. Slide courtesy of Sanjay Sarma. Used with permission.

6]

Recommendations, con't:
 3) Support the expanding profession of "Learning Engineer" – way to work with faculty on online and blended course design using learning science –

4) Change model within higher ed Legacy Sector

Need innovations online but who can be the change agents, institutions, groups?

#### **Course Wrap-Up:**

- <sup>62</sup> <u>CLASS 1: Direct Innovation Factors: R&D (Solow) and Talent (Romer)</u>
- **Indirect** Factors ecosystem
- **CLASS 2: Innovation Systems** 
  - Look at innovation actors Nelson

Culture

"

- **3rd Direct** Innovation Factor?
  - Organization of the Innovation System
    - Pipeline system: technology push Vannevar Bush -radical/ breakthrough innovation - strong federal role
    - Induced innovation industry led tech pull incremental advance
       <u>Innovation organization the third key aligning the innovation actors</u>
- <sup>66</sup> <u>CLASS 3&4 Mfg. as a case study link between innovation/production</u>
- <sup>66</sup> CLASS 5: Innovation at the Institutional Level
  - How does the R and D and Prototyping handoff occur?
  - US system V. Bush split R and D
  - Basic Research was federal science agency task; industry had the later stages
- **CLASS 6: Result: Valley of Death between R and D**

#### Class Wrap-Up, Con't --

#### CLASS 7: Innovation at the Face to Face Level

63

People innovate not institutions

"Great Group" theory

#### <sup>6</sup><u>CLASS 8: DARPA: the connected science model</u>

Breakthrough science to prototype stage

Bridges Valley of Death - right/left translational model

## CLASS 9: The NIH story: case study in institutional organizational problems

Basic research only, so valley of death problem

Stovepipes prevent cross-cutting tech advance

Industry issues: organized for blockbusters not for small disease populations diseases, infectious disease, or 3rd world disease

Biothreat model - create incentives for counter-market

#### CLASS 10: Energy Technology:

The challenge of innovation within an established, complex Legacy sector

Have to look at Front End and Back End of innovation system

Fill gaps in innovation institutions

#### Class Wrap-up, Con't CLASS 11: Education

Freeman: talent base will affect innovation performance/growth

64

- Romer point: Gov' t policy focused on capital supply and R&D incentives
  - <u>Missing focus on inputs to R&D: talent -</u> proof: GI Bill and Sputnik multiplied science talent base
- Could turn around the number of college grads studying science/math and solve problem
- Katz and Goldin: tech advance/education disconnect = income inequality
- Bamol: educating for incremental advance not breakthrough advance - how do you educate for the latter?
- MIT Online Ed Report –merge research, learning engineers, change agents
  - Bonvillian/Weiss online ed offers rev in learning blended reforms

MIT OpenCourseWare <a href="https://ocw.mit.edu">https://ocw.mit.edu</a>

#### STS.081J / 17.395J Innovation Systems for Science, Technology, Energy, Manufacturing and Health Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.