Week 3
Building Straw Towers

Reading: Transformative Communication as a Cultural Tool for Guiding Inquiry Science
(Polman & Pea, 2001)
School Science Reform Research: A Brief Historic

- There has been three decades of educational debate around scientific and technological literacy
- It started in the 80’s when we realized that high school students:
 - Opted to take few science courses
 - Held major misconceptions
 - Scored low on international science tests
- And this was happening all over the world
• To date there are over 500 studies that have addressed the school science reform movement.
• But still there are problems with:
 – Low enrollment levels
 – Few females choosing science careers
 – Lack decision-making skills
• Recent surveys say that science jobs are increasing but the general level of public knowledge is not keeping pace.
Major Obstacles to Success

1. Teacher’s understanding of how students learn
 • An incomplete list of what learning should be:
 – Purposeful
 – Situated or contextualized
 – Anchored in real-world experience
 – Actively constructed
 • This occurs through:
 – Problem-solving and inquiry
 – Debating, arguing and discussing
 – Applying what they’ve learned
 – Motivation
2. Teacher’s comfort levels with pedagogical content knowledge

- This is related to skills, strategies, and theoretical understanding of how to teach in a specific content area.
- Three-quarters of North American elementary teachers feel inadequately prepared to teach science.
- They often rely on textbooks, worksheets and teacher-centered instruction.
Building Straw Towers

• A couple of notes:
 - You will be taking the role of the learner in this activity.
 - We will be performing an experiment to observe the effects of collaboration vs. competition.
• When I say tower, what are some images that come to mind?
• What are some purposes of towers in the real world?
• What are some design challenges you would need to consider when building a tower?
Design Challenge

You have been brought together as a group of civil engineers to construct the tallest, most stable tower. Your design team will be competing for a contract awarded by the city. Before you can be awarded the contract, however, you must develop a prototype of the tower you intend to build.
Parameters

1. You must work in a group of three.
2. You must first develop a drawing on paper.
3. Once the drawing is completed you can collect your materials.
4. You can only use 40 straws and a meter of tape and you must use all of them.
5. Let’s generate evaluation criteria? (height maybe should be one)
6. The competition will close in 45 minutes.
Experiment

- Half of the design teams will be working in the part of the room closest to the windows.
 - Each person will have a role
 - Time Keeper, Material’s Manager, Scout
 - Your group can share ideas with other groups in that half of the room.
- The other half of the design teams will be working in the part of the room closest to the door and in the hallway.
 - You do not have to assign roles
 - Your team cannot talk to other teams and you must try to hide your design from others.
Evaluation

• Differences and similarities between the structures?
• Which ones hold up best under the prescribed conditions?
• What are some variables that make the most successful towers?
• How did the collaborative teams feel during the activity?
• How did the competitive teams feel during the activity?
• How is this method different than some of the methods you seen or used in other science classes?
Reflection

Read the Polman & Pea (2001) article and consider the following questions:

1. What is the meaning of transformative communication as compared to ritualistic and transmissive communication?

2. What might be possible next steps you would take as a classroom teacher in a follow up lesson to the straw towers activity.

Discuss your answers in teams of two or three and post them in the forum on Moodle.
11.124 Introduction to Education: Looking Forward and Looking Back on Education
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.