Computer Lab #3

Analyze data: T-test, ANOVA and Correlation

Tips to get the software and data work:
To use STATA on Linux system
 type "add stata" in the terminal
 type “xstata” in the terminal
To use flash drive on Linux system
 type "add consult" in the terminal
 type "tellme root" and pay attention to the password it gives you
 type "attach-usb" and then enter that password
 The path will be “/mnt/usb/foldername”
 type "detach-usb", and give the same password to detach f-drive

Metadata of “Hedonic.dta”
This data set contains observations on house prices and attributes in the city of Newton.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>house code</td>
</tr>
<tr>
<td>price</td>
<td>sale price</td>
</tr>
<tr>
<td>lot</td>
<td>lot size</td>
</tr>
<tr>
<td>style</td>
<td>building style</td>
</tr>
<tr>
<td>year_b</td>
<td>year when the house was built</td>
</tr>
<tr>
<td>size</td>
<td>total areas of living space</td>
</tr>
<tr>
<td>room</td>
<td>number of rooms</td>
</tr>
<tr>
<td>bed</td>
<td>number of bedrooms</td>
</tr>
<tr>
<td>bath</td>
<td>number of bathrooms</td>
</tr>
<tr>
<td>q1</td>
<td>interior condition of the house: “above”, “average”, “bellow”</td>
</tr>
<tr>
<td>q2</td>
<td>bathroom condition: “above”, “average”, “bellow”</td>
</tr>
<tr>
<td>year_s</td>
<td>year of sale</td>
</tr>
<tr>
<td>old</td>
<td>dummy variable = 1 if the house was built before 1930</td>
</tr>
</tbody>
</table>

STATA commands used in today’s class

ttest compare the sample means or other descriptive statistics values
oneway one-way analysis of variance
anova analysis of variance
corr simple correlation among variables
twoway scatter produce scatter plot of outcome vs. predictor
graph matrix produce multiple twoway scatter plot at a time

Scripts in the real Command Window

cd E:\MIT\09Spring\STATALAB\DATA (change this part to your own local directory)
 use hedonic, clear
 log using log1, text
 summarize

1) T-test (One sample and two independence samples)
11.220 Quantitative Reasoning and Statistical Methods for Planning

/// Compare the mean of one variable to some constant value
\texttt{ttest size = 1770} \quad * \text{Can we reject H0 } \mu = 1770? \text{ Why?}
\texttt{ttest size = 2000} \quad * \text{Can we reject H0 } \mu = 2000? \text{ Why?}
\texttt{ttest size = 1770, level(99)} \quad * \text{Can we reject H0 } \mu = 1770 \text{ now?}

*Note: This is to infer whether the mean of the population equals 1700 or 2000, given the sample mean we already know.

/// Compare the mean of two different variables
\texttt{ttest bed = bath, unpaired}

*Note: Here I use the option “unpaired” since the means are from different variables. “Paired” \textit{ttest} is by default, which is designed to compare the means of the same variable from different samples. Think of a “pre-post” situation.

/// Compare the mean price of old houses vs. new houses
\texttt{tab old, summarize(price)}
\texttt{ttest price, by(old)} \quad * \text{Can we reject H0: } \mu_{p\text{ old}} = \mu_{p\text{ new}}?
\texttt{ttest price, by(old) unequal}

*Note: If we concern that the samples may have different variances, we need to include “unequal” option.

2) Analysis of Variance

/// See whether the old houses and new houses have equal variance?
\texttt{oneway price, old} \quad * \text{Check the chi2 value, what do you find?}
\texttt{anova price, old}

3) Things to do before run into “regression”

/// See the simple correlation among variables before we do regression, and this help us to roughly determine which predictors to be included.
\texttt{corr price lot year_b size room bed bath year_s}

/// Plot the outcome against some predictors
\texttt{graph matrix price lot size room, half}

/// Plot “price” against “lot” with fitted linear regression line
\texttt{twoway scatter price lot || lfit price lot}

/// Plot “price” against “lot” with 95% confidence interval
\texttt{twoway scatter price lot || lfitci price lot}

/// Do simple linear regression!
\texttt{regress price lot}

Exercises

1: Test whether the \(\mu \) of lot size = 8600? 8900? On a 95% confidence level.
2: Test whether the \(\mu \) of lot size is statistically different between new and old house.
3. Test whether the variances of price are different for houses with different interior quality? Hint: use “q1” to divide the data into 3 groups.
4. Plot “price” against “room” with fitted regression line and confidence interval.