Week 2: The Urban Land Market, location, rents, prices.

- Ricardian Rent with Commuting in a radial city.
- Land Supply and Urban Comparative Statics.
- Spatial capitalization of Ricardian Rent.
- Multiple land users, market competition, “highest use” segmentation.
Empirical Studies of Location and Land Prices (e.g. Waddell)
Sometimes the relationships are complicated.

Land or Housing Price

Distance from Highway

Positive Value of Access

Negative Value of Proximity
1). $R(d) = R(b) + k(b - d)$: “Housing Rent”
 - $d =$ any “interior” location
 - $b =$ Most “marginal or farthest location
 - $0 =$ “Best”, most central location
 - $k =$ annual commuting cost [inc. time] per mile from “best” or central location

2). $R(b) =$ “replacement” cost [annualized]
 - $= R_a + c$
 - $R_a =$ “Agricultural” rent for a lot
 - $c =$ annual “rent” for construction
3). \(r(d) = \left[R(d) - c \right]/q \) “Land Rent = a residual”
\(q = \text{lot size, acres} \)

4). \(r(d) = r_a + k[b - d]/q \)
\(r_a = R_a/q, \text{ land price per acre} \)

5). \(b = \left[Nq/\pi V \right]^{1/2} \)
\(N = \# \text{households [population]} \)
\(V = \text{fraction of land within circle available for development} \)
Components of Housing Rent

dashed line:
rent without development at the edge = rent for the lot

Location Rent:
\[k \left[b - d \right] \]

Structure Rent: \(c \)

Agricultural lot Rent \(R_a = r_a q \)

Distance: \(d \) Border: \(b \)
Components of Land Rent:
[Housing rent-structure rent] /q

Location Rent:
$k [b - d] /q$

Agricultural Rent: r_a

Distance: d Border: b
6). City Comparisons:
 a). More population N implies higher R(d)
 b). Denser cities have higher land rent?
 c). Transportation improvements: reductions in k.
 d). Transportation access: increases V. (Bombay, SF).
 e). Other geographies [islands, coastlines]
Bombay: World Bank Project.
What are the benefits of constructing a new bridge?
7). Population growth at rate $2g$ implies boundary $[b]$ growth rate of g [see previous equation]

$$b_t = b_0 e^{gt}$$

$$n_t = n_0 e^{2gt}$$

8). Hence Ricardian Rent for existing structures located at (d) in time t:

$$R_t(d) = (r_a q + c) + k(b_t - d)$$

[$d \leq b_t$]
Expansion of Housing Rent as the city grows in population and the border moves from b_0 to b_t.

- **Location rent**
- **Structure rent**
- **Agricultural rent**

Distance (d) from the Center to b_0 and b_t. House Rent $R(d)$ decreases as distance increases.
9). Price of existing structures at (d) in time 0 is PDV of future Rent. With discount rate i:
\[P_0(d) = \frac{r_a q}{i} + \frac{c}{i} + \frac{k[b_0 - d]}{i} + \frac{kb_0 g}{[i - g]i} \]

- term1 = value of land used perpetually in agriculture
- term2 = value of constructing structure
- term3 = value of current Ricardian Rent
- term4 = value of future growth in Ricardian Rent

[note that d < b_0, and i > g, if g = 0 reduces to ?]
10). Spatial multipliers or capitalization rates. With much effort the price/rent multiplier today for existing structures is:

\[\frac{P_0(d)}{R_0(d)} = \frac{1}{i} + \frac{k b_0 g}{i[i - g]} R_0(d) \]

As we examine farther locations where rent is lower this term implies a greater price multiple or lower cap rate. Why?

With no growth \([g=0]\) the multiple is the inverse of the discount rate – at all locations More?
11). Like land rent, land price is a residual from structure price, for existing structures.

\[p_t(d) = \frac{[P_t(d) - c/i]}{q} \]

What about the price of land beyond the current border \((b_0) \). In \(t \) years from now the border will have expanded to \(b_0 e^{gt} \). Inverting, land at distance \(d > b_0 \) will be developed in \(T = \frac{\log(d/b_0)}{g} \) years from now.
12). Hence for \(d > b_0 \) the value of land has two components: the discounted value of agricultural rent until developed, plus its value once developed – discounted to now.

\[
p_0(d) = PDV_{0 \rightarrow T} (r_a) + e^{-iT} p_T(d) \\
= r_a / i + e^{-iT} kb_T g / [i - g] i q
\]

For locations \(d = b_0 e^{gT} \) which will be developed at \(T \) years hence.

Notice that as \(g \) hits zero the last term vanishes. Where are land prices most volatile as \(g \) fluctuates?
The components of Land Prices

Land Price $p_0(d)$

- Current Location Value
- Future Increase in Location Value
- Agricultural value

Distance: Center to b_0 to Distance

developed → vacant

MIT Center for Real Estate
Numerical Example

- Parameters: \(N = 2 \text{ million, } q = 0.25 \text{ acre (0.0004 square miles), } k = $200 \text{ per mile per year, } c = $7000, \; i = 0.07, \; r_a = $1000 \text{ per year, } V = 0.6 \)

- Solution:

 \(b = 20 \text{ miles (approximate)} \)

 \(R(0) = $11,250, \; R(b) = $7250 \)

 \(r(0) = $17,000 \text{ (acre), } r(b) = $1000 \)

 If \(g = 0.02 \), then:

 \(P(b) = $127,000, \; P(0) = $184,000 \)

 \(p(b) = $105,000, \; p(0) = $334,000 \)
The Four variables of the simple model do quite well in explaining the large difference in average house prices between US metro areas.

<table>
<thead>
<tr>
<th>1990 Construction Cost Index</th>
<th>1990 Value</th>
<th>1980 HHs</th>
<th>1990 HHs</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston CMSA</td>
<td>248.8</td>
<td>176,400</td>
<td>1,219,603</td>
<td>1,547,004</td>
</tr>
<tr>
<td>Cincinnati CMSA</td>
<td>203.9</td>
<td>71,400</td>
<td>586,818</td>
<td>652,920</td>
</tr>
<tr>
<td>Dallas/Ft. Worth CMSA</td>
<td>187.9</td>
<td>78,700</td>
<td>1,076,297</td>
<td>1,449,872</td>
</tr>
<tr>
<td>Denver CMSA</td>
<td>198.4</td>
<td>89,300</td>
<td>609,360</td>
<td>737,806</td>
</tr>
<tr>
<td>Detroit CMSA</td>
<td>227.4</td>
<td>69,400</td>
<td>1,601,967</td>
<td>1,723,478</td>
</tr>
<tr>
<td>Houston CMSA</td>
<td>192.8</td>
<td>63,800</td>
<td>1,096,353</td>
<td>1,331,845</td>
</tr>
<tr>
<td>Kansas City MSA</td>
<td>209.7</td>
<td>66,500</td>
<td>493,485</td>
<td>602,347</td>
</tr>
<tr>
<td>Los Angeles CMSA</td>
<td>239.8</td>
<td>211,700</td>
<td>4,141,097</td>
<td>4,900,720</td>
</tr>
<tr>
<td>Miami CMSA</td>
<td>191.1</td>
<td>88,700</td>
<td>1,027,347</td>
<td>1,220,797</td>
</tr>
<tr>
<td>Minneapolis MSA</td>
<td>213.7</td>
<td>88,700</td>
<td>762,376</td>
<td>935,516</td>
</tr>
<tr>
<td>New Orleans MSA</td>
<td>188.2</td>
<td>70,000</td>
<td>418,406</td>
<td>455,178</td>
</tr>
<tr>
<td>Philadelphia CMSA</td>
<td>230.5</td>
<td>102,300</td>
<td>1,925,787</td>
<td>2,154,104</td>
</tr>
<tr>
<td>Phoenix MSA</td>
<td>195.4</td>
<td>85,300</td>
<td>544,759</td>
<td>807,560</td>
</tr>
<tr>
<td>Pittsburgh CMSA</td>
<td>213.9</td>
<td>55,200</td>
<td>828,504</td>
<td>891,923</td>
</tr>
<tr>
<td>Portland CMSA</td>
<td>216.3</td>
<td>72,600</td>
<td>477,513</td>
<td>575,531</td>
</tr>
<tr>
<td>Rochester NY MSA</td>
<td>218.4</td>
<td>86,600</td>
<td>342,195</td>
<td>374,475</td>
</tr>
<tr>
<td>San Antonio MSA</td>
<td>182.6</td>
<td>57,300</td>
<td>349,330</td>
<td>451,021</td>
</tr>
<tr>
<td>San Francisco CMSA</td>
<td>267.3</td>
<td>257,700</td>
<td>1,970,549</td>
<td>2,329,808</td>
</tr>
<tr>
<td>Tampa MSA</td>
<td>191.3</td>
<td>71,300</td>
<td>638,816</td>
<td>869,481</td>
</tr>
<tr>
<td>Washington DC MSA</td>
<td>205.6</td>
<td>166,100</td>
<td>1,112,770</td>
<td>1,459,358</td>
</tr>
</tbody>
</table>

Adapted from DiPasquale and Wheaton (1996)

*HH, household

CMSA, Consolidated Metropolitan Statistical Area.

MSA, Metropolitan Statistical Area

$$\text{PRICE} = -298,138 + 0.019\text{HH} + 152,156 \text{HHGRO} + 1,622 \text{COST}$$

$$R^2 = .76$$
13). Suppose that Population is not growing but k is increasing at the rate g because of high gas prices and worsening transport congestion (sound familiar).

\[k_t = k_0 e^{gt} \]

14). Hence Ricardian Rent for existing structures located at (d) in time t is:

\[R_t(d) = (r_a q + c) + k_t (b_0 - d) \]

\[[d \leq b_0] \]

15). And Prices: \(P_t(d) = r_a q/i + c/i + k_t [b_0 - d] \)

\[(i - g) \]

16). What are the spatial multipliers now? What parts of the city have prices rising the fastest?
Transportation: the real explanation for Historic appreciation (or lack thereof).

- Average commute speeds were 3 mph in 1840 (walk).
- Increase to 7 mph with trolley cars (1870).
- Then 15 mph with more modern subways (1910).
- Cars average about 25 mph (1950-Today).
- 8-fold increases in speed have offset 8-fold increases in travel distance as NYC grew from 300,000 to 12 million households!
- What transportation improvements will happen in the future?
Expansion of Housing Rents as population growth expands the border, but technology improves transportation.
17). Suppose there are two groups of households with different commuting costs [days/week, value of time…].

\[R_1(d) = R(b) + k_1(b - d) \]
\[R_2(d) = R(b) + k_2(b - d), \quad k_1 > k_2 \]

18). Location equilibrium involves giving all the best locations [closest] to the group that values it most (1). Highest use implies that this group is willing to pay more for all houses from 0 to m. Group 2 gets m to b.
19). Hence in equilibrium.

\[R_2(m) = R(b) + k_2(b - m) \]
\[R_1(0) = R_2(m) + k_1(m - 0), \]

20). Determining \(b, m \) depends on how many households of each type there are: \(n_1, n_2 \).

\[m = \left[\frac{n_1 q}{\pi V} \right]^{1/2} \]
\[b = \left[\frac{(n_2 + n_1) q}{\pi V} \right]^{1/2} \]
Housing Rents and Land Use Competition with 2 Household types [1,2]
 a). A natural result of market competition – not necessarily an “evil”.
 b). Contrary to “new urbanism” which pins the “blame” for segregated uses on zoning.
 c). Is there a “value” to mixing? What patterns do we see in dense urban mixed use? Vertical versus horizontal segregation.