Example

- No friction
- Sliding object
- How do \vec{F} at bottom?
 - a constant
- Difficult problem using force!!

\[W_1 = 0 \quad \text{N L dcl} \]
\[k_2 + u_2 = k_1 + u_1 \]
\[\frac{1}{2} m v^2 + 0 = 0 + \text{mg} R \]
\[v_f = \sqrt{2gR} \]
If there is friction, it would be less!

Example

Pull string to side with force P.
Slowly: $\Delta E = 0$

\[P = T \sin \theta \quad \{ P = \text{w} \tan \theta = \text{mg} \tan \theta \} \]
\[W = T \cos \theta \]

work done = $\int \text{force} \cdot \text{distance} \, \text{d}x$

\[\Delta w = k \Delta \theta \quad \text{arc length} \]
\[W = \int \text{work} \cdot \text{cos} \theta \, \text{d} \theta \]
\[= \text{WR} \sin \text{c} \, \text{d} \theta \]
\[= \text{WR} (1 - \cos \theta) \]

\[W_{\text{total}} = W_T + W_R = \Delta K + \Delta U = \Delta E \]

\[W_T = 0 \quad \text{T L dcl} \]
\[\Delta K = 0 \quad \text{Sunny moves slower} \]
\[W_T = \Delta U = \text{mg} \Delta y \]
\[\Delta y = R (1 - \cos \theta) \]
\[W_p = W_R (1 - \cos \theta) \]
Lecture 14, Blackboard #2

Example
- No friction
- Sliding Object
- Which is F at bottom?
- S constant

Difficult problem using force!!

\[W_N = 0 \quad N \perp \text{decel} \]
\[F_k + F_a = F_{\text{tot}} \]
\[\frac{1}{2} m v^2 + 0 = 0 + mgR \]
\[F = \sqrt{2gR} \]
If there is friction, \(W \) would be less!

Block on Incline
- More a distance D
- \(v \) at \(t = 0 \)
- Find \(W \) at \(t = t \)
- \(W_D = (m g \sin \theta) \cdot D \)
- \(W_f = \int F \cdot \overline{FD} = FD \)
- \(K_F = \frac{1}{2} m v^2 \), \(K_i = 0 \)
- \(K_F - K_i = W_{\text{Net}} \)
- \(\frac{1}{2} m v^2 = 0 = FD - mgD(s \theta + u \cos \theta) \)
- \(v = \sqrt{\frac{2FD - 2gD(s \theta + u \cos \theta)}{m}} \)
- If \(\left[\frac{2FD - 2gD(s \theta + u \cos \theta)}{m} \right] = 0 \)
- If \(\left[\right] < 0 \quad ?? \Rightarrow u = 0 \)
Conservative Forces

Given \(\text{Kinetic} + \text{Potential Energy} = \text{Great} \)

Sprung: \(E = K + U \) \(\text{[Constant]} \rightarrow \text{Conservative} \)

1st: \(E = K + U \) \(\text{[Constant]} \rightarrow \text{Conservative} \)

Integrate general requirements for a force to be conservative: Assume \(F \) is a function only \(f \) of position.

Definition:
\[\mathbf{F} \text{ is conservative} \]

\[\frac{\delta W}{\delta x} = F \text{ for every two points.} \]

Example

\[E = K + U \]

\[E_1 = 0 \]

\[F = \frac{1}{2} \left[m_1 + m_2 \right] \frac{v_1^2}{2} - m_1 g \left(x_2 - x_1 \right) \]

\[E_2 = ? \]

\[x_2 - x_1 = 0.75 \text{m} \]

\[m_1 = 206 \]

\[m_2 = 100 \]

\[u_1 = 10 \]

\[v_2 = ? \]

\[v_2 = \sqrt{2m_1 g (x_2 - x_1)} = \sqrt{2 \times 100 \times 10 \times 0.75 \text{m/s}^2} \]

\[= 10 \text{m/s} \]

Conservation of Energy

Cases where \(K + U \) \(\text{[Not constant]} \)

\(\rightarrow \text{Competitive forces} \)

\[\Delta E + \Delta U + \Delta (\text{All others}) = 0 \]

Forms of Energy

- Thermal energy
- Electrical
- Chemical
- Nuclear
- Mechanical

Laws of Conservation of Energy

Helps in all domains. Even, why Newton's laws fail!
Conservation Forces

Gravity + Kinetic = Potential Energy = Constant

First Law of Conservation: E = K + U

What are general requirements for a force to be conservative? Assume F is a function only of position.

Definition: F is conservative if W_{P_1, P_2} = W_{P_2, P_1} for any two paths.

Potential Energy

P_1 \rightarrow P_2 \rightarrow P_1

If F is conservative, total W = 0

W_{P_1, P_2} + W_{P_2, P_1} = 0

\int_{P_1}^{P_2} F \cdot dr + \int_{P_2}^{P_1} F \cdot dr = \int_{P_1}^{P_2} F \cdot dr - \int_{P_2}^{P_1} F \cdot dr = 0

Conservation of Energy

Gravitational Potential Energy = Constant

Conservation of Kinetic Energy

Friction: No!!

Work = 0

Always opposite motion. Work \Rightarrow Heat/Dissipate.
Lecture 14, Blackboard #5

Mechanical Energy
- \(\Delta KE = \text{Work done by Force} \)
- \(k_s - k_i = \int_{P_i}^{P_f} F \, dt \)
- \(K_s + U_{i} = U_{s} + U_{i} \)
- \(\text{Total Mech Enrgy} = \text{Constant} \)

Pot Energy: Gravity (non Earth)
- \(F = -mg \)
- \(\int_{P_i}^{P_f} F \, dt + U(P) \)
- \(\int_{P_i}^{P_f} F \, dt = -mg \int_{P_i}^{P_f} \, dt \)

\(U(P) = -mgz - \frac{1}{2} \alpha \beta \)

Potential Energy & Conservation of Forces
- \(U(P) = \text{Pot Energy at Reference Point} \)
- \(U(R) = \text{Pot Energy at General Point} \)
- \(P = \text{Reference Point} \)
- \(P' = \text{General Point} \)

\(U(P) = -\int_{P_i}^{P_f} F \, dt + U(P') \)

\(\Delta U = U(P) - U(P') = -\int_{P_i}^{P_f} F \, dt \)

\(\text{Nature's work done by the force between } P \text{ and } P' \)

\(U(R) \text{ Drops Out! Always!} \)

Choose \(U(P) = 0 \)!