VISUAL INDEX
WEEK 5:
PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES
A PRACTICAL GUIDE TO PRESENTING YOUR WORK

self-assembled structures
Whitesides Lab
Department of Chemistry and Chemical Biology
Harvard University
unpublished

micro reactor
Jensen Lab
Massachusetts Institute of Technology

bacterial analysis
Losey, M.W., Schmidt, M.A., and Jensen, K.F.

bacterial analysis
Braff, W.A., Willner, D., Hugenholtz, P.
"Dielectrophoresis-Based Discrimination of Bacteria at the Strain Level Based on Their Surface Properties." *PLOS ONE* (October, 2013).

bacterial analysis
Steinmann, V., Jaramillo, R., Hartman, K., et al.

solar cell
T. Buonassisi Lab
Photovoltaic Research Laboratory
Massachusetts Institute of Technology

Belousov-Zhabotinsky reaction
Braff, W.A., Willner, D., Hugenholtz, P.
"Dielectrophoresis-Based Discrimination of Bacteria at the Strain Level Based on Their Surface Properties." *PLOS ONE* (October, 2013).

Belousov-Zhabotinsky reaction
Fife, P. C.
"Understanding the Patterns in the BZ Reagent." *Journal of Statistical Physics* 39, nos. 5–6 (June 1985).

all images by Felice Frankel
VISUAL INDEX
WEEK 5: PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES
A PRACTICAL GUIDE TO PRESENTING YOUR WORK

block copolymers
Ned Thomas Lab
Massachusetts Institute of Technology


reversible collapse
A. Hosoi Lab
Massachusetts Institute of Technology
unpublished

integrated optical components
Alice White Laboratory
Bell Laboratories, Lucent Technologies


patterned drops of water
Harvard University


black silicon
E. Mazur, Mazur Group
Harvard University


magnetic core memory

WEEK 5:
PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES
A PRACTICAL GUIDE TO PRESENTING YOUR WORK

VISUAL INDEX

morpho butterfly wing

Prism

three-dimensional metallic tetrahedron microstructure


Chemistry and Chemical Reactivity, Feb 7, 2008
John C. Kotz and Paul M. Treichel
Brooks Cole; 7 edition
(February 7, 2008)

Boye Lab, Department of Mechanical Engineering
Massachusetts Institute of Technology

J. Rogers, Department of Materials Science and Engineering; Rogers Research Group
Previously for this research: Bell Labs. Presently: University of Illinois at Urbana-Champaign

“lotus effect”
J. Dijksman, Physics Department
Duke University


J. Dijksman, Physics Department
Duke University

Linda Griffith Lab
DuPont MIT Alliance
Massachusetts Institute of Technology
unpublished

Microsystems Technology Laboratories
Massachusetts Institute of Technology


DuPont MIT Alliance
Massachusetts Institute of Technology

MAKING SCIENCE AND ENGINEERING PICTURES
A PRACTICAL GUIDE TO PRESENTING YOUR WORK

WEEK 5:
PRESENTING YOUR WORK

Moungi Bawendi Lab
Massachusetts Institute of Technology

Gas Pillars in the Eagle Nebula (M16):
Pillars of Creation in a Star-Forming Region

Jeff Hester, Paul Scowen
NASA

Hubble images
NASA

Y. Fink, Materials Science and Engineering Department; Research Laboratory of Electronics

optical fibers
Massachusetts Institute of Technology

Hubble images
NASA

Heimer, B.W., Shatova, T.A., and Lee, J.K.

H. Sikes Laboratory,
Department of Chemical Engineering
Massachusetts Institute of Technology

assay

MITnano

quantum dots

MIT PUBLICATION:
MIT.nano, The Future of Innovation, 2014

Hubble

http://www.stsci.edu/gallery/album/entire/pr19
http://hubblesite.org/gallery/album/entire/pr19

Jeff Hester, Paul Scowen
NASA

http://www.stsci.edu/gallery/album/pr5044a/

http://www.stsci.edu/gallery/album/pr5044a/

Jeff Hester, Paul Scowen
NASA

http://www.stsci.edu/gallery/album/pr5044a/
VISUAL INDEX
WEEK 5: PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES
A PRACTICAL GUIDE TO PRESENTING YOUR WORK

High pressure microreactor
K. Jensen, Jensen Research Group
Massachusetts Institute of Technology


patterned drops of water
G. Whitesides, Department of Chemistry and Chemical Biology; Whitesides Research Group
Harvard University


soft microfluidic sensor
J. Rogers, Department of Materials Science and Engineering; Rogers Research Group
University of Illinois at Urbana-Champaign


patterned copolymers
G. Whitesides, Department of Chemistry and Chemical Biology; Whitesides Research Group
Harvard University


nanowires
Charles Lieber Lab
Massachusetts Institute of Technology


VISUAL INDEX
WEEK 5:
PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES
A PRACTICAL GUIDE TO PRESENTING YOUR WORK

G. Fink, Whitehead Institute for Biomedical Research
Massachusetts Institute of Technology


M. Rubner, Department of Materials Science and Engineering
Massachusetts Institute of Technology

A. Epstein, Gas Turbine Laboratory, and M. Schmidt; Microsystems Technology Laboratories
Massachusetts Institute of Technology


D. Ehrlich and P. Matsudaira
Whitehead Institute for Biomedical Research
unpublished


all images by Felice Frankel
WEEK 5: PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES
A PRACTICAL GUIDE TO PRESENTING YOUR WORK

vortices left by strider

John Bush Lab
Massachusetts Institute of Technology

ocean wave analysis

Department of Civil and Environmental Engineering
Massachusetts Institute of Technology

quantum dots

Original images by P. Zou and A. Ting
Massachusetts Institute of Technology

silicon optical bench submount

Alice White Lab, Bell Laboratories
Lucent Technologies

DNA analysis

Phillip A. Sharp Lab
Massachusetts Institute of Technology

aligned carbon nanotubes

SEMs and research by John Hart
Massachusetts Institute of Technology
Felice Frankel

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.