Table of Contents

Essay 1: Dimensional Analysis of Models and Data Sets: Similarity Solutions and Scaling Analysis

1. **About dimensional analysis**
 1.1 The goal and the plan .. 4
 1.2 About this essay ... 5

2. **Models of a simple pendulum**
 2.1 A physical model ... 6
 2.2 A mathematical model .. 6
 2.3 Models generally ... 8

3. **An informal dimensional analysis**
 3.1 Invariance to a change of units 9
 3.2 Natural units .. 11
 3.3 Extra and omitted variables ... 12

4. **A basis set of nondimensional variables**
 4.1 The mathematical problem ... 13
 4.2 The null space .. 15
 4.3 A basis set for the simple, inviscid pendulum 16

5. **The viscous pendulum**
 5.1 A physical model of the viscous pendulum 19
 5.2 Drag on a moving sphere .. 20
 5.2.1 Zero order solution .. 21
 5.2.2 The other nondimensional variables: remarks on the Reynolds number .. 22
 5.3 A numerical simulation ... 23
 5.4 An approximate model of the decay rate 25

6. **A similarity solution for diffusion in one dimension**
 6.1 Honing the physical model ... 28
 6.2 A similarity solution .. 28

7. **Scaling analysis**
 7.1 A nonlinear projectile problem 31
 7.2 Small parameter → small term? 34
 7.3 Scaling the dependent variable 36
 7.4 Approximate and iterated solutions 37

8. **Summary and closing remarks** 39
Essay 2: The Coriolis force

1 Large-scale flows of the atmosphere and ocean. 4
 1.1 Classical mechanics observed from a rotating Earth 8
 1.2 The goal and the plan of this essay 11
 1.3 About this essay ... 13

2 Part I: Rotating reference frames and the Coriolis force. 14
 2.1 Kinematics of a linearly accelerating reference frame 15
 2.2 Kinematics of a rotating reference frame 17
 2.2.1 Transforming the position, velocity and acceleration vectors 17
 2.2.2 Stationary ⇒ Inertial; Rotating ⇒ Earth-Attached 24
 2.2.3 Remarks on the transformed equation of motion 26

3 Inertial and noninertial descriptions of elementary motions. 27
 3.1 Switching sides ... 28
 3.2 To get a feel for the Coriolis force 30
 3.2.1 Zero relative velocity .. 31
 3.2.2 With relative velocity .. 32
 3.3 An elementary projectile problem 34
 3.3.1 From the inertial frame ... 34
 3.3.2 From the rotating frame .. 34
 3.4 Appendix to Section 3: Circular motion and polar coordinates. 37

4 A reference frame attached to the rotating Earth. 38
 4.1 Cancelation of the centrifugal force 39
 4.1.1 Earth’s (slightly chubby) figure 39
 4.1.2 Vertical and level in an accelerating reference frame 41
 4.1.3 The equation of motion for an Earth-attached frame 41
 4.2 Coriolis force on motions in a thin, spherical shell 42
 4.3 Why do we insist on the rotating frame equations? 44
 4.3.1 Inertial oscillations from an inertial frame 45
 4.3.2 Inertial oscillations from the rotating frame 47

5 A dense parcel on a slope. 49
 5.1 Inertial and geostrophic motion 54
Large-Scale Flows of the Atmosphere and Ocean

5.2 Energy budget .. 56

6 Part II: Geostrophic adjustment and potential vorticity. 57
 6.1 The shallow water model 58
 6.2 Solving and diagnosing the shallow water system 60
 6.2.1 Energy balance ... 61
 6.2.2 Potential vorticity balance 61
 6.3 Linearized shallow water equations 65

7 Models of the Coriolis parameter. 65
 7.1 Case 1, $f = 0$, non rotating 66
 7.2 Case 2, $f = \text{constant}$, an f-plane, 70
 7.3 Case 3, $f = f_0 + \beta y$, a β-plane, 77
 7.3.1 Beta-plane phenomena 78
 7.3.2 Rossby waves; low frequency waves on a beta plane .. 82
 7.3.3 Modes of potential vorticity conservation 86
 7.3.4 Some of the varieties of Rossby waves 87

8 Summary of the essay. 90

9 Supplementary material. 92
 9.1 Matlab and Fortran source code 92
 9.2 Additional animations 93
Essay 3: Lagrangian and Eulerian Representations of Fluid Flow: Kinematics and the Equations of Motion

1 The challenge of fluid mechanics is mainly the kinematics of fluid flow. 4
 1.1 Physical properties of materials; what distinguishes fluids from solids? 5
 1.1.1 The response to pressure — in linear deformation liquids are not very different from solids 6
 1.1.2 The response to shear stress — solids deform and fluids flow 9
 1.2 A first look at the kinematics of fluid flow 13
 1.3 Two ways to observe fluid flow and the Fundamental Principle of Kinematics 14
 1.4 The goal and the plan of this essay; Lagrangian to Eulerian and back again 17

2 The Lagrangian (or material) coordinate system. 19
 2.1 The joy of Lagrangian measurement 21
 2.2 Transforming a Lagrangian velocity into an Eulerian velocity 23
 2.3 The Lagrangian equations of motion in one dimension 24
 2.3.1 Mass conservation; mass is neither lost or created by fluid flow 24
 2.3.2 Momentum conservation; \(F = Ma \) in a one dimensional fluid flow 28
 2.3.3 The one-dimensional Lagrangian equations reduce to an exact wave equation 30
 2.4 The agony of the three-dimensional Lagrangian equations 31

3 The Eulerian (or field) coordinate system. 33
 3.1 Transforming an Eulerian velocity field to Lagrangian trajectories 34
 3.2 Transforming time derivatives from Lagrangian to Eulerian systems; the material derivative 35
 3.3 Transforming integrals and their time derivatives; the Reynolds Transport Theorem 38
 3.4 The Eulerian equations of motion 41
 3.4.1 Mass conservation represented in field coordinates 41
 3.4.2 The flux form of the Eulerian equations; the effect of fluid flow on properties at a fixed position 44
 3.4.3 Momentum conservation represented in field coordinates 46
 3.4.4 Fluid mechanics requires a stress tensor (which is not as difficult as it first seems) 47
 3.4.5 Energy conservation; the First Law of Thermodynamics applied to a fluid 53
 3.5 A few remarks on the Eulerian equations 54

4 Depictions of fluid flows represented in field coordinates. 55
 4.1 Trajectories (or pathlines) are important Lagrangian properties 55
 4.2 Streaklines are a snapshot of parcels having a common origin 58
 4.3 Streamlines are parallel to an instantaneous flow field 58

5 Eulerian to Lagrangian transformation by approximate methods. 60
5.1 Tracking parcels around a steady vortex given limited Eulerian data .. 60
 5.1.1 The zeroth order approximation, or PVD .. 60
 5.1.2 A first order approximation, and the velocity gradient tensor 61
5.2 Tracking parcels in gravity waves ... 63
 5.2.1 The zeroth order approximation, closed loops .. 64
 5.2.2 The first order approximation yields the wave momentum and Stokes drift 64

6 Aspects of advection, the Eulerian representation of fluid flow. ... 67
 6.1 The modes of a two-dimensional thermal advection equation ... 68
 6.2 The method of characteristics implements parcel tracking as a solution method 70
 6.3 A systematic look at deformation due to advection; the Cauchy-Stokes Theorem 74
 6.3.1 The rotation rate tensor ... 77
 6.3.2 The deformation rate tensor .. 79
 6.3.3 The Cauchy-Stokes Theorem collects it all together .. 81

7 Lagrangian observation and diagnosis of an oceanic flow. ... 82

8 Concluding remarks; where next? ... 86

9 Appendix: A Review of Composite Functions .. 87
 9.1 Definition .. 88
 9.2 Rules for differentiation and change of variables in integrals .. 89
Resource: Online Publication. Fluid Dynamics
James Price

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.