In order of fast growth as x gets large:

- $\log x$ (logarithmic)
- x^2, x^3 (polynomial)
- $2^x, e^x, 10^x$ (exponential)
- $x!, x^x$ (factorial)

Choose $x = 1000 = 10^3$ so that $\log x = 3$. It is OK to use $x! \approx \frac{x^x}{e^x}$.

Logarithms are exponents! $\log 10^9 = 9$. $\log \log x$ is VERY slow.

Logarithms 3 6 9 300 434 1000 2566 3000

Polynomial growth \ll Exponential growth \ll Factorial growth.

Decay to zero for NEGATIVE powers and exponents:

\[
\frac{1}{x^2} = x^{-2} \text{ decays much more slowly than the exponential } \frac{1}{e^x} = e^{-x}
\]

Polylogarithmic scale shows $x = 1, 10, 100$ equally spaced. NO ZERO!

Question If $x = 1, 2, 4, 8$ are plotted, what would you see?

Answer THEY ARE EQUALLY SPACED TOO!

Log-log graphs (log scale up and also across)

If $y = Ax^n$, how to see A and n on the graph?

Plot $\log y$ versus $\log x$ to get a straight line:

\[
\log y = \log A + n \log x
\]

Slope on a log-log graph is the exponent n.

For $y = Ab^x$ use **semilog** (x versus $\log y$ is now a line): $\log y = \log A + x \log b$.
Growth Rates and Log Graphs

New type of question
How quickly does \(\frac{\Delta f}{\Delta x} \) approach \(\frac{df}{dx} \) as \(\Delta x \to 0 \)?

The error \(E = \frac{\Delta f}{\Delta x} - \frac{df}{dx} \) will be \(E \approx A(\Delta x)^n \)
What is \(n \)?

Usual one-sided \(\frac{\Delta f}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} \) only has \(n = 1 \)

Centered difference \(\frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} \) has \(n = 2 \)

Centered is much better than one-sided
\(E \approx (\Delta x)^2 \) vs \(E \approx \Delta x \)

[IDEA FOR \(f(x) = e^x \)]
One-sided \(E \) vs centered \(E \)

[PROJECT at \(x = 0 \)]
Graph \(\log E \) vs log \(\Delta x \)
Should see slope 1 or 2

Practice Questions

1. Does \(x^{100} \) grow faster or slower than \(e^x \) as \(x \) gets large?
2. Does 100 \(\ln x \) grow faster or slower than \(x \) as \(x \) gets large?
3. Put these in increasing order for large \(n \):
 \[\frac{1}{n}, \quad n \log n, \quad n^{1.1}, \quad \frac{10^n}{n!} \]
4. Put these in increasing order for large \(x \):
 \[2^{-x}, \quad e^{-x}, \quad \frac{1}{x^2}, \quad \frac{1}{x^{10}} \]

5. Describe the log-log graph of \(y = 10x^5 \) (graph \(\log y \) vs \(\log x \))

 Why don’t we see \(y = 0 \) at \(x = 0 \) on this graph?

 What is the slope of the straight line on the log-log graph?

 The line crosses the vertical axis when \(x = \) _____ and \(y = \) _____

 Then \(\log x = 0 \) and \(\log y = \) _____

 The line crosses the horizontal axis when \(x = \) _____ and \(y = 1 \)

 Then \(\log x = \) _____ and \(\log y = 0 \)

6. Draw the semilog graph (a line) of \(y = 10e^x \) (graph \(\log y \) versus \(x \))

7. That line cross the \(x = 0 \) axis at which \(\log y \)? What is the slope?